首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Two-substrate kinetic analysis: a novel approach linking ion and acid-base transport at the gills of freshwater trout,Oncorhynchus mykiss
Authors:Greg G Goss  Chris M Wood
Institution:(1) Department of Biology, McMaster University, 1280 Main St. West, L8S 4K1 Hamilton, Ontario, Canada;(2) Present address: Dept. of Biology, University of Ottawa, 30 George Glinski, K1N 6N5 Ottawa, Ontario, Canada
Abstract:Summary The novel application of a two-substrate model (Florini and Vestling 1957) from enzymology to transport kinetics at the gills of freshwater trout indicated that Na+/acidic equivalent and Cl-/basic equivalent flux rates are normally limited by the availability of the internal acidic and basic counterions, as well as by external Na+ and Cl- levels. Adult rainbow trout fitted with dorsal aortic and bladder catheters were chronically infused (10–16 h) with isosmotic HCl to induce a persistent metabolic acidosis. Acid-base neutral infusions of isosmotic NaCl and non-infused controls were also performed. Results were compared to previous data on metabolic alkalosis in trout induced by either isosmotic NaHCO3 infusion or recovery from environmental hyperoxia (Goss and Wood 1990a, b). Metabolic acidosis resulted in a marked stimulation of Na+ influx, no change in Cl- influx, positive Na+ balance, negative Cl- balance, and net H+ excretion at the gills. Metabolic alkalosis caused a marked inhibition of Na+ influx and stimulation of Cl- influx, negative Na+ balance, positive Cl- balance, and net H+ uptake (=base excretion). Mean gill intracellular pH qualitatively followed extracellular pH. Classical one-substrate Michaelis-Menten analysis of kinetic data indicated that changes in Na+ and Cl- transport during acid-base disturbance are achieved by large increases and decreases in Jmax, and by increases in Km. However, one-substrate analysis considers only external substrate concentration and cannot account for transport limitations by the internal substrate. The kinetic data were fitted successfully to a two-substrate model, using extracellular acid-base data as a measure of internal HCO 3 - and H+ availability. This analysis indicated that true Jmax values for Na+/acidic equivalent and Cl-/basic equivalent transport are 4–5 times higher than apparent Jmax values by one-substrate analysis. Flux rates are limited by the availability of the internal counterions; transport Km values for HCO 3 - and H+ are far above their normal internal concentrations. Therefore, small changes in acid-base status will have large effects on transport rates, and on apparent Jmax values, without alterations in the number of transport sites. This system provides an automatic, negative feedback control for clearance or retention of acidic/basic equivalents when acid-base status is changing.Abbreviations Amm total ammonia in water - DMO 5prime5-dimethyl-2prime4-oxyzolidine-dione - Jin unidirectional inward ion movement across the gill - Jout unidirectional outward ion movement across the gill - Jnet net transfer of ions (sum of Jin and Jout) across the gill - Jmax maximal transport rate for ion - Km inverse of affinity of transporter for ion - PIO2 partial pressure of oxygen in inspired water - PaCO2 partial pressure of carbon dixide in arterial blood - TAlk titratable alkalinity of the water - PEG polyethylene glycol - NEN New England Nuclear
Keywords:Gills  Ions  Acid-base  Kinetics  Intracellular pH  Trout  Oncorhynchus mykiss
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号