首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Mapping of structural determinants for the oligomerization of p58, a lectin-like protein of the intermediate compartment and cis-Golgi.
Authors:U Lahtinen  K Svensson  R F Pettersson
Institution:Ludwig Institute for Cancer Research, Stockholm, Sweden.
Abstract:Shortly after synthesis, p58, the rat homologue of the mannose-binding lectin ERGIC-53/MR60, which localizes to pre-Golgi and cis-Golgi compartments, forms dimers and hexamers, after which an equilibrium of both forms is reached. Mature p58, a type I membrane protein, contains four cysteine residues in the lumenal domain which are capable of forming disulphide bonds. The membrane-proximal half of the lumenal domain consists of four predicted alpha-helical domains, one heavily charged and three amphipathic in nature, all candidates for electrostatic or coiled-coil interactions. Using single-stranded mutagenesis, the cysteines were individually changed to alanines and the contribution of each of the alpha-helical domains was probed by internal deletions. The N-terminal cysteine to alanine mutants, C198A and C238A and the double mutant, C198/238A, oligomerized like the wild-type protein. The two membrane-proximal cysteines were found to be necessary for the oligomerization of p58. Mutants lacking one of the membrane proximal cysteines, either C473A or C482A, were unable to form hexamers, while dimers were formed normally. The C473/482A double mutant formed only monomers. Deletion of any of the individual alpha-helical domains had no effect on oligomerization. The dimeric and hexameric forms bound equally well to D-mannose. The dimeric and monomeric mutants displayed a cellular distribution similar to the wild-type protein, indicating that the oligomerization status played a minimal role in maintaining the subcellular distribution of p58.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号