Abstract: | Ten species of marine phytoplankton were grown under a range of photosynthetic photon flux densities (PFDs) and examined for variation in cell volume and carbon quota. Results suggest that in response to low PFDs phytoplankton generally reduce their cell volume and frequently reduce their carbon quota. A significant linear relationship between the log of PFD (I) and cell volume (in nine of ten species) and log I and carbon quota (four of ten species) was demonstrated. When exposed, to a transient in light intensity, Thalassiosira pseudonana (Hustedt, clone 3H) Hasle and Heimdal underwent a rapid adaptation in cell volume and carbon quota. Cells going from low light to high light reached maximum mean cell volume within 5 h, and cells going from high light to low light reached a minimum mean cell volume within 12 h. The resulting kinetic constant (k; a measure of the rate of adaptation) was considerably larger than previously reported k values. Ditylum brightwellii (West) Grunow increased in length but did not increase in width during a transient to increased irradiance. Nutrient limitation was shown to override PFD in determining cell volume and carbon quota for Heterosigma akashiwo Hada. Cells grown at equivalent irradiances but N-limited, were smaller than light-limited and nutrient-saturated cells. Therefore, cell volume and carbon quota do not have the same relationship with PFD when factors other than PFD control growth rate. The ecological implications of reduced cell volumes and carbon quotas with decreasing PFD include possible impacts on CO2 budgets, an influence on sinking rates, potential changes in predation rates, and surface area/cell volume benefits. |