Abstract: | Three clones of marine Synechococcus (WH6501, WH7803, and WH8018) were grown through at least three transfers, at 6-day intervals, in synthetic medium with total iron concentrations from 10?9 to 10?6 M. After 6 days of exponential growth, these cultures were harvested, and the cell density and protein and pigment concentrations were measured. Aliquots of the culture were assayed for their carbon fixation rates at two light intensities. Cell density and protein concentration increased by up to 7.8 times over a range of iron from the lowest (10?9 M) to the highest concentrations (10?6 M). The concentration of chlorophyll-a and phycobiliproteins showed a wider range of response, increasing by up to 48 times. The carbon fixation rate (per mL of culture) also increased approximately 40 times over the total range of iron concentration. The ranges of these biochemical and physiological responses were much lower than the range of total available iron, which was 1000-fold, and the range of total cellular iron, which was estimated to be about 160-fold. This “less-than-linear” relationship indicates that the cells are adapting to make more efficient use of iron under limiting conditions. Our results demonstrate characteristics of iron-limited Synechococcus that may be important in understanding the relationships between primary productivity and iron availability in the oceans. |