首页 | 本学科首页   官方微博 | 高级检索  
     


Lysophosphatidic acid stimulates nuclear and cytoplasmic maturation of golden hamster immature oocytes in vitro via cumulus cells
Authors:Hinokio Kenji  Yamano Shuji  Nakagawa Koji  Iraharaa Minoru  Kamada Masaharu  Tokumura Akira  Aono Toshihiro
Affiliation:Department of Obstetrics and Gynecology, School of Medicine, University of Tokushima, Japan.
Abstract:
Lysophosphatidic acid (LPA), a member of the phospholipid autacoid family, is induced in incubated human follicular fluid by lysophospholipase D. It is well known that LPA functions as a growth factor and the hypothesis that LPA in human follicular fluid takes a part in meiosis of oocytes is quite plausible. We studied the effects of LPA on the maturation of golden hamster immature oocytes in vitro. Hamster oocytes with a germinal vesicle were cultured in Tyrode's albumin lactate pyruvate (TALP) medium with 10(-5) M LPA, 10 ng/ml epidermal growth factor (EGF), 30 ng/ml insulin-like growth factor-1, 1 ng/ml tumor growth factor-alpha or 1 ng/ml basic fibroblast growth factor. The nuclear maturation rates in the LPA and EGF groups were significantly higher than in the control group and the other growth factors did not show any stimulatory effect (LPA group; 74.3% [75/101], EGF group; 82.4% [89/108] vs. control group; 60.2% [59/98], p < 0.05, p < 0.01, respectively). When the cells of cumulus were removed, EGF and LPA did not increase the nuclear maturation rates. Cotreatment EGF and LPA did not significantly enhance the stimulatory effect observed with LPA alone on maturation in vitro. The penetration rate determined by the zona-free hamster oocyte test was significantly higher in the LPA group than in the control group (26.7% vs. 13.2%, p < 0.05) and was comparable with that of oocytes matured in vivo. In conclusion, LPA stimulates the nuclear and cytoplasmic maturation of hamster immature oocytes via cumulus cells.
Keywords:Lysophosphatidic acid (LPA)   In vitro maturation   EGF   Hamster oocytes
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号