首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Whole genome bisulfite sequencing of cell-free DNA and its cellular contributors uncovers placenta hypomethylated domains
Authors:Taylor J Jensen  Sung K Kim  Zhanyang Zhu  Christine Chin  Claudia Gebhard  Tim Lu  Cosmin Deciu  Dirk van den Boom  Mathias Ehrich
Institution:Sequenom Laboratories, 3595 John Hopkins Ct, San Diego, CA 92121 USA ;Sequenom Inc., 3595 John Hopkins Ct, San Diego, CA 92121 USA
Abstract:BackgroundCirculating cell-free fetal DNA has enabled non-invasive prenatal fetal aneuploidy testing without direct discrimination of the maternal and fetal DNA. Testing may be improved by specifically enriching the sample material for fetal DNA. DNA methylation may allow for such a separation of DNA; however, this depends on knowledge of the methylomes of circulating cell-free DNA and its cellular contributors.ResultsWe perform whole genome bisulfite sequencing on a set of unmatched samples including circulating cell-free DNA from non-pregnant and pregnant female donors and genomic DNA from maternal buffy coat and placenta samples. We find CpG cytosines within longer fragments are more likely to be methylated. Comparison of the methylomes of placenta and non-pregnant circulating cell-free DNA reveal many of the 51,259 identified differentially methylated regions are located in domains exhibiting consistent placenta hypomethylation across millions of consecutive bases. We find these placenta hypomethylated domains are consistently located within regions exhibiting low CpG and gene density. Differentially methylated regions identified when comparing placenta to non-pregnant circulating cell-free DNA are recapitulated in pregnant circulating cell-free DNA, confirming the ability to detect differential methylation in circulating cell-free DNA mixtures.ConclusionsWe generate methylome maps for four sample types at single-base resolution, identify a link between DNA methylation and fragment length in circulating cell-free DNA, identify differentially methylated regions between sample groups, and uncover the presence of megabase-size placenta hypomethylated domains.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-015-0645-x) contains supplementary material, which is available to authorized users.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号