Abstract: | Mitochondrial outer membrane permeabilization (MOMP) is a critical control point during apoptosis that results in the release of pro-apoptotic mitochondrial contents such as cytochrome c. MOMP is largely controlled by Bcl-2 family proteins such as Bax, which under various apoptotic stresses becomes activated and oligomerizes on the outer mitochondrial membrane. Bax oligomerization helps promote the diffusion of the mitochondrial contents into the cytoplasm activating the caspase cascade. In turn, Bax is regulated primarily by anti-apoptotic Bcl-2 proteins including Bcl-xL, which was recently shown to prevent Bax from accumulating at the mitochondria. However, the exact mechanisms by which Bcl-xL regulates Bax and thereby MOMP remain partially understood. In this study, we show that the small CHCH-domain-containing protein CHCHD2 binds to Bcl-xL and inhibits the mitochondrial accumulation and oligomerization of Bax. Our data show that in response to apoptotic stimuli, mitochondrial CHCHD2 decreases prior to MOMP. Furthermore, when CHCHD2 is absent from the mitochondria, the ability of Bcl-xL to inhibit Bax activation and to prevent apoptosis is attenuated, which results in increases in Bax oligomerization, MOMP and apoptosis. Collectively, our findings establish CHCHD2, a previously uncharacterized small mitochondrial protein with no known homology to the Bcl-2 family, as one of the negative regulators of mitochondria-mediated apoptosis.Apoptosis is a tightly regulated form of programmed cell death that is critical for proper embryonic development, tissue homeostasis and immune response. Aberrant regulation of apoptosis contributes to a wide range of ailments including autoimmune disorders, neurodegenerative diseases and cancer. Unlike necrotic cell death, apoptosis is a genetic program that is characterized by distinct morphological features such as membrane blebbing, chromatin condensation, DNA fragmentation and cell shrinkage.1 In vertebrates, apoptosis can occur through two pathways: extrinsic, or receptor-mediated apoptosis, and intrinsic, or mitochondria-mediated apoptosis. Intrinsic apoptosis is induced by cellular stressors such as DNA damage, which lead to mitochondrial outer membrane permeabilization (MOMP), cytochrome c release from the mitochondrial intermembrane space, activation of cysteine proteases (caspases) and induction of apoptosis. Once MOMP occurs, cell death is thought to be inevitable. Therefore, much research has been devoted to elucidating the mechanisms and signaling pathways that govern this critical regulatory point in apoptosis.MOMP is controlled largely by the B-cell lymphoma 2 (Bcl-2) family of proteins,2 all of which contain at least one of four BH (Bcl-2 homology) domains designated BH1–4. During apoptosis, the pro-apoptotic Bcl-2 proteins Bax and/or Bak become activated and oligomerize on the mitochondrial outer membrane3 increasing mitochondrial membrane permeabilization through a mechanism that is not entirely clear. Bax and Bak are activated by BH3-only Bcl-2 family proteins such as Bim, t-Bid and Puma.4, 5, 6, 7, 8, 9, 10, 11, 12, 13 Conversely, Bax and Bak are inhibited by pro-survival Bcl-2 family proteins such as Bcl-2, Mcl-1 and Bcl-xL.2, 14, 15, 16 Of the pro-survival Bcl-2 family proteins, Bcl-2 is found at the outer mitochondrial membrane, whereas Bcl-xL and Mcl-1 localize to the outer mitochondrial membrane and the mitochondrial matrix.17, 18 Matrix-localized Bcl-xL and Mcl-1 have been shown to promote mitochondrial respiration,19 suggesting that crosstalk exists between apoptotic pathways and other mitochondria-based biological events. Based on this recent discovery, one might reason that other mitochondrial proteins previously characterized as structural proteins or metabolism-associated enzymes could play an additional intermediate role in the regulation of apoptosis by interacting with Bcl-2 family proteins.We identified CHCHD2 in a mass spectrometry-based screen for binding partners of p32, a mitochondrial protein previously shown by our lab to bind and mediate the apoptotic effects of the tumor suppressor p14ARF.20 CHCHD2 was subsequently detected in independent screens for proteins that regulate cellular metabolism and migration;21, 22 however, the functions of CHCHD2 remain unknown. CHCHD2 is encoded by the chchd2 gene (coiled-coil helix coiled-coil helix domain-containing 2), which spans 4921 base pairs, contains 4 exons, and is located on human chromosome 7p11.2, a chromosomal region that is often amplified in glioblastomas.23 The protein encoded by the chchd2 gene is ubiquitously expressed24 and is relatively small, as it codes for only 151 amino acids. CHCHD2 is well-conserved among different species from humans to yeast, and mouse and human CHCHD2 share 87% amino acid sequence identity (Supplementary Figures S1A and S1B). CHCHD2 contains a C-terminal CHCH (coiled-coil helix coiled-coil helix) domain, which is characterized primarily by four cysteine residues spaced 10 amino acids apart from one another (CX(9)C motif).25 The function of the CHCH domain is not well understood, and the few characterized proteins that harbor this domain have diverse functions. Many CHCH domain-containing proteins localize to the mitochondrial inner membrane or the intermembrane space, including Cox12, Cox17, Cox19, Cox23, Mia40 (yeast homolog of human CHCHD4), CHCHD3 and CHCHD6. Cox17 and Cox19 aid in the assembly of the COX complex,26, 27 whereas Mia40/Tim40 has been shown to transport proteins into the mitochondrial intermembrane space.28, 29 Furthermore, CHCHD3 and CHCHD6 are essential for maintaining the integrity of mitochondrial cristae and thus mitochondrial function.30, 31, 32 Interestingly, a recent report has shown that CHCHD6 is regulated by DNA damage stress, and alterations in CHCHD6 expression affect the viability of breast cancer cells in response to genotoxic anticancer drugs.32Despite advances in our understanding of how MOMP and apoptosis are regulated by the Bcl-2 family of proteins, much remains unknown with respect to the mechanisms that lead to Bax activation and oligomerization particularly concerning the roles that mitochondria-associated proteins play in the process. In this study, we characterize the small, mitochondria-localized protein CHCHD2 as a novel regulator of Bax oligomerization and apoptosis. Furthermore, we show evidence that CHCHD2 binds to Bcl-xL at the mitochondria under unstressed conditions. In response to apoptotic stimuli, CHCHD2 decreases and loses its mitochondria localization, which is accompanied by decreased Bcl-xL–Bax interaction and increased Bax homo-oligomerization and Bax–Bak hetero-oligomerization. Collectively, our results suggest that CHCHD2 negatively regulates the apoptotic cascade upstream of Bax oligomerization. |