首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Unravelling the complex trait of harvest index in rapeseed (Brassica napus L.) with association mapping
Authors:Xiang Luo  Chaozhi Ma  Yao Yue  Kaining Hu  Yaya Li  Zhiqiang Duan  Ming Wu  Jinxing Tu  Jinxiong Shen  Bin Yi  Tingdong Fu
Institution:National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070 P.R. China
Abstract:

Background

Harvest index (HI), the ratio of grain yield to total biomass, is considered as a measure of biological success in partitioning assimilated photosynthate to the harvestable product. While crop production can be dramatically improved by increasing HI, the underlying molecular genetic mechanism of HI in rapeseed remains to be shown.

Results

In this study, we examined the genetic architecture of HI using 35,791 high-throughput single nucleotide polymorphisms (SNPs) genotyped by the Illumina BrassicaSNP60 Bead Chip in an association panel with 155 accessions. Five traits including plant height (PH), branch number (BN), biomass yield per plant (BY), harvest index (HI) and seed yield per plant (SY), were phenotyped in four environments. HI was found to be strongly positively correlated with SY, but negatively or not strongly correlated with PH. Model comparisons revealed that the A–D test (ADGWAS model) could perfectly balance false positives and statistical power for HI and associated traits. A total of nine SNPs on the C genome were identified to be significantly associated with HI, and five of them were identified to be simultaneously associated with HI and SY. These nine SNPs explained 3.42 % of the phenotypic variance in HI.

Conclusions

Our results showed that HI is a complex polygenic phenomenon that is strongly influenced by both environmental and genotype factors. The implications of these results are that HI can be increased by decreasing PH or reducing inefficient transport from pods to seeds in rapeseed. The results from this association mapping study can contribute to a better understanding of natural variations of HI, and facilitate marker-based breeding for HI.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1607-0) contains supplementary material, which is available to authorized users.
Keywords:Harvest index  Complex traits  Brassica napus  Association mapping  Correlation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号