首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Enrichment of Triticum aestivum gene annotations using ortholog cliques and gene ontologies in other plants
Authors:Dan Tulpan  Serge Leger  Alain Tchagang  Youlian Pan
Institution:.Information and Communications Technologies, National Research Council Canada, Moncton, New Brunswick E1A 7R1 Canada ;.Information and Communications Technologies, National Research Council Canada, Ottawa, Ontario K1A 0R6 Canada
Abstract:

Background

While the gargantuan multi-nation effort of sequencing T. aestivum gets close to completion, the annotation process for the vast number of wheat genes and proteins is in its infancy. Previous experimental studies carried out on model plant organisms such as A. thaliana and O. sativa provide a plethora of gene annotations that can be used as potential starting points for wheat gene annotations, proven that solid cross-species gene-to-gene and protein-to-protein correspondences are provided.

Results

DNA and protein sequences and corresponding annotations for T. aestivum and 9 other plant species were collected from Ensembl Plants release 22 and curated. Cliques of predicted 1-to-1 orthologs were identified and an annotation enrichment model was defined based on existing gene-GO term associations and phylogenetic relationships among wheat and 9 other plant species. A total of 13 cliques of size 10 were identified, which represent putative functionally equivalent genes and proteins in the 10 plant species. Eighty-five new and more specific GO terms were associated with wheat genes in the 13 cliques of size 10, which represent a 65% increase compared with the previously 130 known GO terms. Similar expression patterns for 4 genes from Arabidopsis, barley, maize and rice in cliques of size 10 provide experimental evidence to support our model. Overall, based on clique size equal or larger than 3, our model enriched the existing gene-GO term associations for 7,838 (8%) wheat genes, of which 2,139 had no previous annotation.

Conclusions

Our novel comparative genomics approach enriches existing T. aestivum gene annotations based on cliques of predicted 1-to-1 orthologs, phylogenetic relationships and existing gene ontologies from 9 other plant species.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1496-2) contains supplementary material, which is available to authorized users.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号