首页 | 本学科首页   官方微博 | 高级检索  
     


Structural insight into the molecular basis of polyextremophilicity of short-chain alcohol dehydrogenase from the hyperthermophilic archaeon Thermococcus sibiricus
Authors:Ekaterina Y. Bezsudnova  Konstantin M. Boyko  Konstantin M. Polyakov  Pavel V. Dorovatovskiy  Tatiana N. Stekhanova  Vadim M. Gumerov  Nikolai V. Ravin  Konstantin G. Skryabin  Michael V. Kovalchuk  Vladimir O. Popov
Affiliation:1. A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, Leninsky Pr. 33, Moscow 119071, Russia;2. Russian National Research Centre “Kurchatov Institute”, Akademika Kurchatova Sq. 1, Moscow 123182, Russia;3. Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str. 32, 119991 Moscow, Russia;4. Centre «Bioengineering» Russian Academy of Sciences, Prosp. 60-let Oktyabrya, Bld. 7-1, Moscow 117312, Russia
Abstract:Biochemical analysis of enantioselective short-chain alcohol dehydrogenase from the hyperthermophilic archaeon Thermococcus sibiricus (TsAdh319) revealed unique polyextremophilic properties of the enzyme – half-life of 1 h at 100 °C, tolerance to high salt (up to 4 M) and organic solvents (50% v/v) concentrations. To elucidate the molecular basis of TsAdh319 polyextremophilicity, we determined the crystal structure of the enzyme in a binary complex with 5-hydroxy-NADP at 1.68 Å resolution. TsAdh319 has a tetrameric structure both in the crystals and in solution with an intersubunit disulfide bond. The substrate-binding pocket is hydrophobic, spacious and open that is consistent with the observed promiscuity in substrate specificity of TsAdh319. The present study revealed an extraordinary number of charged residues on the surface of TsAdh319, 70% of which were involved in ion pair interactions. Further we compared the structure of TsAdh319 with the structures of other homologous short-chain dehydrogenases/reductases (SDRs) from thermophilic and mesophilic organisms. We found that TsAdh319 has the highest arginine and aspartate + glutamate contents compared to the counterparts. The frequency of occurrence of salt bridges on the surface of TsAdh319 is the highest among the SDRs under consideration. No differences in the proline, tryptophan, and phenylalanine contents are observed; the compactness of the protein core of TsAdh319, the monomer and tetramer organization do not differ from that of the counterparts. We suggest that the unique thermostability of TsAdh319 is associated with the rigidity and simultaneous “resilience” of the structure provided by a compact hydrophobic core and a large number of surface ion pairs. An extensive salt bridge network also might maintain the structural integrity of TsAdh319 in high salinity.
Keywords:Archaeal short-chain alcohol dehydrogenase   X-ray structure   Thermostability   Halotolerance and solvent tolerance   Surface ion pairs
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号