首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Histone H3 lysine 4 monomethylation (H3K4me1) and H3 lysine 9 monomethylation (H3K9me1): Distribution and their association in regulating gene expression under hyperglycaemic/hyperinsulinemic conditions in 3T3 cells
Authors:Jeena Gupta  Sandeep Kumar  Juntao Li  R Krishna Murthy Karuturi  Kulbhushan Tikoo
Institution:1. Laboratory of Chromatin Biology, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, Punjab, India;2. Computational and Systems Biology, Genome Institute of Singapore, A∗STAR (Agency for Science, Technology and Research), 60 Biopolis St, S138672, Singapore, Republic of Singapore
Abstract:Hyperglycemia/hyperinsulinemia are leading cause for the induction type 2 diabetes and the role of post-translational histone modifications in dysregulating the expression of genes has emerged as potential important contributor in the progression of disease. The paradoxical nature of histone H3-Lysine 4 and Lysine 9 mono-methylation (H3K4me1 and H3K9me1) in both gene activation and repression motivated us to elucidate the functional relationship of these histone modifications in regulating expression of genes under hyperglycaemic/hyperinsulinemic condition. Chromatin immunoprecipitation–microarray analysis (ChIP-chip) was performed with H3 acetylation, H3K4me1 and H3K9me1 antibody. CLUSTER analysis of ChIP-chip (Chromatin immunoprecipitation–microarray analysis) data showed that mRNA expression and H3 acetylation/H3K4me1 levels on genes were inversely correlated with H3K9me1 levels on the transcribed regions, after 30 min of insulin stimulation under hyperglycaemic condition. Interestingly, we provide first evidence regarding regulation of histone de/acetylases and de/methylases; Myst4, Jmjd2b, Aof1 and Set by H3Ac, H3K4me1 and H3K9me1 under hyperinsulinemic/hyperglycaemic condition. ChIP–qPCR analysis shows association of increased H3Ac/H3K4me1 and decreased levels of H3K9me1 in up regulation of Myst4, Jmjd2, Set and Aof1 genes. We further analyse promoter occupancy of histone modifications by ChIP walking and observed increased occupancy of H3Ac/H3K4me1 on promoter region (−1000 to −1) of active genes and H3K9me1 on inactive genes under hyperglycemic/hyperinsulinemic condition. To best of our knowledge this is the first report that shows regulation of chromatin remodelling genes by alteration in the occupancy of histone H3Ac/H3K4/K9me on both promoter and transcribed regions.
Keywords:Hyperglycemia  Insulin  Histone modifications  Chromatin remodelling genes  Chromatin immunoprecipitation and diabetes
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号