首页 | 本学科首页   官方微博 | 高级检索  
   检索      


P2X7-mediated Increased Intracellular Calcium Causes Functional Derangement in Schwann Cells from Rats with CMT1A Neuropathy
Authors:Lucilla Nobbio  Laura Sturla  Fulvia Fiorese  Cesare Usai  Giovanna Basile  Iliana Moreschi  Federica Benvenuto  Elena Zocchi  Antonio De Flora  Angelo Schenone  and Santina Bruzzone
Abstract:Charcot-Marie-Tooth (CMT) is the most frequent inherited neuromuscular disorder, affecting 1 person in 2500. CMT1A, the most common form of CMT, is usually caused by a duplication of chromosome 17p11.2, containing the PMP22 (peripheral myelin protein-22) gene; overexpression of PMP22 in Schwann cells (SC) is believed to cause demyelination, although the underlying pathogenetic mechanisms remain unclear. Here we report an abnormally high basal concentration of intracellular calcium (Ca2+]i) in SC from CMT1A rats. By the use of specific pharmacological inhibitors and through down-regulation of expression by small interfering RNA, we demonstrate that the high Ca2+]i is caused by a PMP22-related overexpression of the P2X7 purinoceptor/channel leading to influx of extracellular Ca2+ into CMT1A SC. Correction of the altered Ca2+]i in CMT1A SC by small interfering RNA or with pharmacological inhibitors of P2X7 restores functional parameters of SC (migration and release of ciliary neurotrophic factor), which are typically defective in CMT1A SC. More significantly, stable down-regulation of the expression of P2X7 restores myelination in co-cultures of CMT1A SC with dorsal root ganglion sensory neurons. These results establish a pathogenetic link between high Ca2+]i and impaired SC function in CMT1A and identify overexpression of P2X7 as the molecular mechanism underlying both abnormalities. The development of P2X7 inhibitors is expected to provide a new therapeutic strategy for treatment of CMT1A neuropathy.Charcot-Marie-Tooth disease type 1 (CMT1)3 is a progressive hereditary motor and sensory neuropathy, characterized by distal muscle wasting and weakness, foot deformities, and severe slowing of nerve conduction, because of progressive demyelination (1). With a prevalence of 1 case in 2500, CMT1 is the most common hereditary neurologic disorder, and in the majority of cases (CMT1A) the disease is associated with a duplication on chromosome 17p11.2 of the gene for PMP22 (peripheral myelin protein 22) (2). PMP22 is a 22-kDa glycoprotein mainly expressed by myelinating Schwann cells (SC) and localized in compact myelin (3). The transgenic rat model of CMT1A, obtained by overexpression of PMP22 (4), confirms a role of PMP22 in the pathogenesis of CMT1A. Both PMP22 overexpression because of gene duplication and point mutations of PMP22 are associated with a CMT1A phenotype.The biochemical mechanisms correlating PMP22 dysfunction with demyelination are still unclear. Some reports indicate that a perturbed homeostasis of the intracellular Ca2+ concentration (Ca2+]i) might be causally involved in the demyelination process. Conditions inducing an increased Ca2+]i in SC impair cell differentiation and myelination (5, 6), similarly to what occurs in CMT1A. Incubation of intact rat nerves with Ca2+ and ionophores causes a progressive demyelination, spreading from the paranodes and invading regions of formerly compact myelin, which is dependent upon a rise in the Ca2+]i of SC (5).Additional evidence for the detrimental effect of a Ca2+]i elevation on myelin production by SC comes from application of ATP to murine SC monocultures, inducing an immediate and large increase in the Ca2+]i. As a result of ATP treatment, maturation and differentiation of SC, as well as expression of the myelin basic protein and production of compact myelin, are completely prevented (6). Taken together, the above observations indicate that abnormally elevated Ca2+ levels are causally related to impairment of myelin production by SC.In this study, we addressed the possible correlation between PMP22 overexpression and alteration of the Ca2+]i homeostasis in SC from a rat model of CMT1A. We recorded higher levels of basal Ca2+]i in affected than in control cells, and we identified the mechanisms responsible for the perturbation of the Ca2+]i levels in CMT1A SC. Experiments with pharmacological inhibitors and with small interfering RNA (siRNA) unequivocally demonstrated a correlation in CMT1A SC between overexpression of the purinergic receptor P2X7 and influx of extracellular Ca2+]i across this plasma membrane receptor/channel. In addition, correction of the abnormally elevated Ca2+]i levels by the use of a P2X7 antagonist or through down-regulation of the expression of P2X7 by transfection with siRNA or with short hairpin RNA-expressing plasmid (shRNA) restored the normal phenotype in CMT1A SC. These findings suggest that CMT1A should be considered as a “calcium disease.” Identification of P2X7 activation as the pathogenetic mechanism underlying demyelination may provide the rationale for a new therapeutic strategy for CMT1A, a disease with no currently available treatment.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号