首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Protective effects of antioxidants on deoxynivalenol-induced damage in murine lymphoma cells
Authors:Alois Strasser  Mirja Carra  Khaled Ghareeb  Wageha Awad  Josef Böhm
Institution:1. Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Wien, Austria
2. Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Wien, Austria
3. Clinic for Avian, Reptile and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Wien, Austria
Abstract:As contradictory results have been reported on the immunotoxic properties of deoxynivalenol (DON) in animal studies, we introduced a lymphoblast cell culture model in order to examine the effects of DON on lymphoblastic cell growth and metabolism as well as the preventive properties of free radical scavenger molecules against the DON-induced cell damage. Murine YAC-1 lymphoma cells were used because lymphoblasts have been shown to be sensitive to DON-induced immunotoxicity. Cells were quantified and their proliferative activity was measured by a proliferation test. Lipid peroxidation and protein oxidation were determined using assays quantifying thiobarbituric acid reactive substances (TBARS) and carbonylated proteins. Severely reduced cell counts were detected in DON-treated samples, confirmed by a 5–10 times lower proliferative activity. Significant increases in lipid peroxidation and protein oxidation were found in parallel incubated samples. The pre-incubation with free radical scavengers significantly reduced DON-induced changes to proteins and lipids as well as the tarnished cell viability and cell proliferation. These results suggest that YAC-1 lymphoma cells are a suitable model to investigate and elucidate the basic molecular and cellular mechanisms for possible immunotoxic effects of DON. With regard to the impact of free radical scavengers, the applied in-vitro model might enable the investigation of potential prophylactic and therapeutic effects before or even without harmful animal experiments and cost- and time-intensive expenses.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号