首页 | 本学科首页   官方微博 | 高级检索  
     


Calcium is the switch in the moonlighting dual function of the ligand-activated receptor kinase phytosulfokine receptor 1
Authors:Victor?Muleya,Janet?I?Wheeler,Oziniel?Ruzvidzo,Lubna?Freihat,David?T?Manallack,Chris?Gehring,Helen?R?Irving  author-information"  >  author-information__contact u-icon-before"  >  mailto:helen.irving@monash.edu"   title="  helen.irving@monash.edu"   itemprop="  email"   data-track="  click"   data-track-action="  Email author"   data-track-label="  "  >Email author
Affiliation:1.Monash Institute of Pharmaceutical Sciences,Monash University,Parkville,Australia;2.Department of Biological Sciences,North-West University,Mmabatho,South Africa;3.Division of Biological and Environmental Sciences and Engineering,4700 King Abdullah University of Science and Technology,Thuwal,Kingdom of Saudi Arabia
Abstract:

Background

A number of receptor kinases contain guanylate cyclase (GC) catalytic centres encapsulated in the cytosolic kinase domain. A prototypical example is the phytosulfokine receptor 1 (PSKR1) that is involved in regulating growth responses in plants. PSKR1 contains both kinase and GC activities however the underlying mechanisms regulating the dual functions have remained elusive.

Findings

Here, we confirm the dual activity of the cytoplasmic domain of the PSKR1 receptor. We show that mutations within the guanylate cyclase centre modulate the GC activity while not affecting the kinase catalytic activity. Using physiologically relevant Ca2+ levels, we demonstrate that its GC activity is enhanced over two-fold by Ca2+ in a concentration-dependent manner. Conversely, increasing Ca2+ levels inhibits kinase activity up to 500-fold at 100 nM Ca2+.

Conclusions

Changes in calcium at physiological levels can regulate the kinase and GC activities of PSKR1. We therefore propose a functional model of how calcium acts as a bimodal switch between kinase and GC activity in PSKR1 that could be relevant to other members of this novel class of ligand-activated receptor kinases.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号