首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Identification of an allosteric binding site for Zn2+ on the beta2 adrenergic receptor
Authors:Swaminath Gayathri  Lee Tae Weon  Kobilka Brian
Institution:Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford Medical Center, Stanford, Palo Alto, California 94305, USA.
Abstract:The activity of G protein-coupled receptors (GPCRs) can be modulated by a diverse spectrum of drugs ranging from full agonists to partial agonists, antagonists, and inverse agonists. The vast majority of these ligands compete with native ligands for binding to orthosteric binding sites. Allosteric ligands have also been described for a number of GPCRs. However, little is known about the mechanism by which these ligands modulate the affinity of receptors for orthosteric ligands. We have previously reported that Zn(II) acts as a positive allosteric modulator of the beta(2)-adrenergic receptor (beta(2)AR). To identify the Zn(2+) binding site responsible for the enhancement of agonist affinity in the beta(2)AR, we mutated histidines located in hydrophilic sequences bridging the seven transmembrane domains. Mutation of His-269 abolished the effect of Zn(2+) on agonist affinity. Mutations of other histidines had no effect on agonist affinity. Further mutagenesis of residues adjacent to His-269 demonstrated that Cys-265 and Glu-225 are also required to achieve the full allosteric effect of Zn(2+) on agonist binding. Our results suggest that bridging of the cytoplasmic extensions of TM5 and TM6 by Zn(2+) facilitates agonist binding. These results are in agreement with recent biophysical studies demonstrating that agonist binding leads to movement of TM6 relative to TM5.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号