首页 | 本学科首页   官方微博 | 高级检索  
   检索      


CaATP inhibition of the MgATP-dependent proton pump (H+-ATPase) in bacterial photosynthetic membranes with a mechanism of alternative substrate inhibition
Authors:Rita Casadio  B A Melandri
Institution:(1) Laboratory of Biochemistry and Biophysics, Department of Biology, Via Irnerio 42, I-40126 Bologna, Italy, IT
Abstract: The membrane-bound F1 sector of the H+–ATPase complex (F-type ATPase) in dark-adapted photosynthetic chromatophores is endowed with MgATP- and CaATP-dependent ATPase activities, both sensitive to inhibitors such as oligomycin and venturicidin. Because of contatamination of free Mg2 + and Ca2+ ions in chromatophore preparations, kinetic characterization of the two hydrolitic reactions can be performed only in the presence of both substrates, using a model for two alternative substrates. The two activities are characterized by similar maximal rates and affinity constants VMgATP and VCaATP: 13±1 and 10±1 nmol s–1 ATP hydrolyzed (μmol BChl)–1; KMgATP and KCaATP: 0.22±0.06 and 0.20±0.05 mm]. However, only the MgATP-dependent ATPase is coupled to Δ*H + generation. In this process CaATP acts as an alternative substrate and a competitive inhibitor of the proton pump, with a KI coincident with KCaATP for the hydrolytic activity. This finding highlights the central role that the coordination chemistry of the ion-nucleotide complex plays in determining the proton gating mechanism at the catalytic site(s) of the enzyme complex. These results are discussed on the basis of the coordination properties of the ions and of the available information on the protein structure. Received: 5 December 1995 / Accepted: 7 March 1996
Keywords:  H+  ATPase  Enzyme kinetics  Alternative substrate inhibition  Proton pump  Energy coupling
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号