首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Transport and metabolism of D-glucose in human adipocytes. Studies of the dependence on medium glucose and insulin concentrations
Authors:E Hj?llund  O Pedersen
Institution:Department of Internal Medicine, Aarhus Amtssygehus, Denmark.
Abstract:Uptake and metabolism of the physiologically labelled D-glucose (D-U-14C]glucose) has been characterized in human adipocytes at several unlabelled D-glucose concentrations in the absence and presence of insulin. Following a 90 min incubation, about 80% of the intracellular radioactivity was incorporated into total lipids at tracer glucose concentration, as well as at higher glucose concentrations in basal and insulin-stimulated cells, whereas 20% was recovered as hydrophilic metabolites. The only 14C-labelled metabolite escaping the cells in detectable amounts was CO2, which accounted about 4%. At trace glucose concentrations (5 mumol/l), the rate of glucose uptake was linear with time. Comparative studies of initial glucose uptake after 10 s and tracer D-glucose conversion to total lipids after 90 min showed high coefficients of correlation between basal rates (r = 0.87), maximal response above basal level to insulin (r = 0.92) and insulin sensitivity (r = 0.78). Thus, under these conditions glucose transport is rate-limiting for net glucose uptake, and measurements over long time intervals of rates for total cell-associated radioactivity or lipogenesis may serve as reliable estimates of initial glucose influx rates. However, the conversion rate of tracer glucose to metabolites decreased progressively with the glucose concentration and with an apparent Km of about 0.2 mmol/l. The three metabolic pathways exhibited similar percentage decreases in their activities, suggesting that a common enzymatic step is rate-limiting. In comparison, the Km for initial D-glucose uptake rate was about 7 mmol/l. Hence, the capacity for total glucose metabolism comprised only a small fraction of the glucose transport capacity at medium glucose concentrations above tracer concentrations. Both basal, half-maximal and maximal insulin-stimulated rates of adipocyte glucose utilization were dependent on the glucose concentration. Thus, comparing lipogenesis at tracer and at 0.5 mmol/l medium glucose concentration, it was shown that the higher medium glucose concentration was associated with a 60% lowering of the basal rate, a 35% reduction in the percentage response above baseline to maximal insulin stimulation and a 4-fold increase in the insulin sensitivity. Obviously, these findings reflect some intracellular step(s) being rate-limiting at medium glucose levels above tracer values.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号