首页 | 本学科首页   官方微博 | 高级检索  
     


Diethylstilbestrol-induced estrogen receptor-dependent [Ca2+]i rises and apoptosis in Chinese hamster ovary (CHO) cells
Authors:Roan Cherng-Jau  Huang Chorng-Chih  Cheng He-Hsiung  Chien Jau-Min  Chou Chiang-Ting  Lin Ko-Long  Liu Shiuh-Inn  Lu Yih-Chau  Chang Hong-Tai  Huang Jong-Khing  Jan Chung-Ren
Affiliation:Department of Gynecology/Obstetrics, Ping Tung Christian Hospital, Pingtung, Taiwan.
Abstract:
The effect of the synthetic estrogen diethylstilbestrol (DES) on cytosolic free Ca2+ concentrations ([Ca2+]i) and cell viability was explored in Chinese hamster ovary (CHO-K1). [Ca2+]i and cell viability were measured by using the fluorescent dyes fura-2 and WST-1, respectively. DES at concentrations>or=1 proportional, variant increased [Ca2+]i in a concentration-dependent manner. The Ca2+ signal was reduced partly by removing extracellular Ca2+. In Ca2+-free medium, after pretreatment with 50 proportional, variant DES, 1 proportional, variant thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor)-induced [Ca2+]i rises were abolished. Conversely, thapsigargin pretreatment abolished DES-induced [Ca2+]i rises. Inhibition of phospholipase C with U73122 did not alter DES-induced [Ca2+]i rises. At a concentration of 5 proportional, variant, DES increased cell viability. At concentrations of 100-200 microM, DES decreased viability in a concentration-dependent manner. The effect of 5 and 100 microM DES on viability was partly reversed by prechelating cytosolic Ca2+ with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N' -tetraacetic acid (BAPTA). DES-induced cell death was induced via apoptosis as demonstrated by propidium iodide staining. DES (100 microM)-induced [Ca2+]i rises were largely inhibited by pretreatment with the estrogen receptor antagonist ICI-182,780 (100 microM). ICI-182,780 did not affect 5 microM DES-induced increase in viability but partly reversed 100 microM DES-induced cell death. Collectively, in CHO-K1 cells, DES induced [Ca2+]i rises by stimulating estrogen receptors leading to Ca2+ release from the endoplasmic reticulum in a phospholipase C-independent manner, and Ca2+ influx. DES-caused cytotoxicity was mediated by an estrogen receptor- and Ca2+-dependent pathway.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号