首页 | 本学科首页   官方微博 | 高级检索  
     


Light inhibition of internode elongation in green plants
Authors:A. Lecharny  R. Jacques
Affiliation:(1) Laboratoire du Phytotron, C.N.R.S., F-91190 Gif-sur-Yvette, France
Abstract:The clongation of the first internode of fully greenVigna sinensis L. is inhibited by white light (W). This inhibition is fluence-rate dependent between 0 and 70 Wm–2. The kinetics of elongation rate in the light after darkness were investigated with linear displacement transducers. The internode elongation rate does not exhibit any endogenous rhythm. A rapid inhibition occurs during the first 2 or 3 h after the onset of light, and a second type of inhibition (slow reaction) increases from the beginning to the 8th hour of light. The rapid inhibition is not fluence-rate dependent between 20 and 70 Wm–2, but the slow reaction is. There is no rapid inhibition in a low fluence rate white light to high fluence rate white light transition, only the slow reaction is observed. The responses to different wavebands, i.e., blue light (B), yellow and green light (YG), and red light (R), are the same for the two inhibition reactions. Each waveband used separately does not reproduce the full effect observed in W. Results show a stimulation with B, a greater inhibition activity with YG than with R, and a synergistic action of B and R which when given together lead to an inhibition similar to that obtained in W. Plants returned from the light to darkness progressively recover a high elongation rate without any latent period. The W light regulating internode elongation rate is mainly perceived by the growing internode itself.Abbreviations B blue light - D darkness - F far-red light - HW high fluence rate white light - LW low fluence rate white light - R red light - W white light - YG yellow and green light
Keywords:Internode elongation  Light inhibition  Vigna
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号