首页 | 本学科首页   官方微博 | 高级检索  
     


Expression of the genome of Mu-like phage D3112 specific for Pseudomonas aeruginosa in Escherichia coli and Pseudomonas putida cells
Authors:T G Plotnikova  L A Kulakov  E N Eremenko  T V Fedorova  V N Krylov
Abstract:The behavior of Escherichia coli cells carrying RP4 plasmid which contains the genome of a Mu-like D3112 phage specific for Pseudomonas aeruginosa was studied. Two different types of D3112 genome expression were revealed in E. coli. The first is BP4-dependent expression. In this case, expression of certain D3112 genes designated as "kil" only takes place when RP4 is present. As a result, cell division stops at 30 degrees C and cells form filaments. Cell division is not blocked at 42 degrees C. The second type of D3112 genome expression is RP4-independent. A small number of phage is produced independently of RP4 plasmid but this does not take place at 42 degrees C. No detectable quantity of the functionally active repressor of the phage was determined in E. coli (D3112). It is possible that the only cause for cell stability of E. coli (D3112) or E. coli (RP4::D3112) at 42 degrees C in the absence of the repressor is the fact of an extremely poor expression of D3112. In another heterologous system, P. putida both ways of phage development (lytic and lysogenic) are observed. This special state of D3112 genome in E. coli cells is proposed to be named "conditionally expressible prophage" or, in short, "conex-phage", to distinguish it from a classical lysogenic state when stability is determined by repressor activity. Specific blockade of cell division, due to D3112 expression, was also found in P. putida cells. It is evident that the kil function of D3112 is not specific to recognize the difference between division machinery of bacteria belonging to distinct species or genera. Protein synthesis is needed to stop cell division and during a short time period this process could be reversible. Isolation of E. coli (D3112) which lost RP4 plasmid may be regarded as an evidence for D3112 transposition in E. coli. Some possibilities for using the system to look for E. coli mutants with modified expression of foreign genes are considered.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号