Kinetics of oxidative phosphorylation in Paracoccus denitrificans. 1. Mechanism of ATP synthesis at the active site(s) of F0F1-ATPase |
| |
Authors: | J A Pérez S J Ferguson |
| |
Affiliation: | Department of Biochemistry, University of Oxford, U.K. |
| |
Abstract: | (1) The rate of ATP synthesis during NADH-driven aerobic respiration has been measured in plasma membrane vesicles from Paracoccus denitrificans as a function of the concentration of the substrates, ADP and inorganic phosphate (Pi). In both cases, the response of the reaction to changes in the degree of saturation of the F0F1-ATPase generated a perfect Micaelian dependence which allowed the determination of the corresponding Michaelis constants, KmADP and KmPi. (2) These kinetic parameters possess a real mechanistic significance, as concluded from the partial reduction of the rate of phosphorylation by the energy-transfer inhibitor venturicidin and the consequent analysis of the results within the framework of the theory of metabolic control. (3) The same membrane vesicles, which catalyze very high rates of ATP synthesis, have been shown to support much lower rates of the exchange ATP in equilibrium Pi and negligible rates of ATP hydrolysis. Under similar conditions, the preparations are also capable of generating phosphorylation potentials, delta Gp, of 60-61 kJ.mol-1. (4) These properties have allowed analysis of the synthetic reaction in the presence of significant concentrations of the product, ATP, using integrated forms of the Michaelis-Menten rate equations. (5) It has been shown that ATP produces pure competitive product inhibition of the forward reaction with a value of KiATP = 16 +/- 1 microM, thus indicating that the affinity of the nucleotide for the active site(s) of the F0F1-ATPase, during net ATP synthesis, is significantly higher than previously thought. (6) The order of binding of the substrates, ADP and Pi, to the active site(s) has been determined as random. (7) At very low concentrations of ADP, a second and much smaller Michaelis constant for this substrate has been identified, with an estimated value of KmADP approximately equal to 50 nM, associated with a maximal rate of only 2% of that measured at a higher range of concentrations. (8) The results obtained are discussed in relation to the presence of two or three equivalent catalytic sites operating in the cooperative manner explicitly described by the binding change mechanism. |
| |
Keywords: | |
|
|