Abstract: | The role of specific amino acid residues of the K88ab and K99 fibrillar adhesins in the binding to erythrocytes and antibodies has been studied by chemical modification. It appeared that: (1) The integrity of the single disulfide bridge in the K99 subunits is essential for the binding of the fibrillae to the glycolipid receptors, but not for the recognition and binding of specific anti-K99 antibodies. (2) Modification of one lysine residue per subunit with 4-chloro-3,5-dinitrobenzoate results in the loss of the adhesive capacity of K99 fibrillae. Lysine residue are not important for the adhesive activity of K88ab fibrillae. Three or five lysine residues per subunit, respectively, can be modified without an effect on the immunological properties of the K99 and K88ab fibrillae. (3) Limited reaction of K99 and K88ab fibrillae with 2,3-butanedione destroys the adhesive activity of both fibrillae. This inactivation corresponds with the loss of one (K99) or two (K88ab) arginine residues per subunit. Ultimately, in K99 three, and in K88ab four, arginine residues per subunit can be modified without affecting the binding of specific antibodies. (4) Modification of five out of the nine carboxyl groups contained in the K99 subunit suppresses the recognition of specific anti-K99 antibodies, but carboxylates are not important for the adhesive activity of K99 fibrillae. Modification of two additional carboxylates in K99 results in an insoluble product. (5) Tyrosine residues are most probably not present in the adhesive or antigenic sites of K99 fibrillae. Modification of six out of the ten tyrosine residues in the K88ab subunit results in a decrease in adhesive activity but has no effect on the reaction with anti-K88ab antibodies. |