首页 | 本学科首页   官方微博 | 高级检索  
     


Immobilization of glucose oxidase on graphene oxide for highly sensitive biosensors
Authors:Sung-Gil Hong  Jae Hyun Kim  Ryang Eun Kim  Seok-Joon Kwon  Dae Woo Kim  Hee-Tae Jung  Jonathan S. Dordick  Jungbae Kim
Affiliation:1.Department of Chemical and Biological Engineering,Korea University,Seoul,Korea;2.Green School,Korea University,Seoul,Korea;3.Department of Chemical and Biological Engineering, and Center for Biotechnology and Interdisciplinary Studies,Rensselaer Polytechnic Institute,Troy,USA;4.Department of Chemical and Biomolecular Eng. (BK-21 plus) & KAIST Institute for Nano century,Korea Advanced Institute of Science and Technology,Daejeon,Korea
Abstract:
Glucose oxidase (GOx) was immobilized onto graphene oxide (GRO) via three different preparation methods: enzyme adsorption (EA), enzyme adsorption and crosslinking (EAC), and enzyme adsorption, precipitation and crosslinking (EAPC). EAPC formulations, prepared via enzyme precipitation with 60% ammonium sulfate, showed 1,980 and 1,630 times higher activity per weight of GRO than those of EA and EAC formulations, respectively. After 59 days at room temperature, EAPC maintained 88% of initial activity, while EA and EAC retained 42 and 45% of their initial activities, respectively. These results indicate that the steps of precipitation and crosslinking in the EAPC formulation are critical to achieve high enzyme loading and stability of EAPC. EA, EAC and EAPC were used to prepare enzyme electrodes for use as glucose biosensors. Optimized EAPC electrode showed 93- and 25-fold higher sensitivity than EA and EAC, respectively. To further increase the sensitivity of EAPC electrode, multi-walled carbon nanotubes (MWCNTs) were mixed with EAPC for the preparation of enzyme electrode. Surprisingly, the EAPC electrode with additional 99.5 wt% MWCNTs showed 7,800-fold higher sensitivity than the EAPC electrode without MWCNT addition. Immobilization and stabilization of enzymes on GRO via the EAPC approach can be used for the development of highly sensitive biosensors as well as to achieve high enzyme loading and stability.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号