首页 | 本学科首页   官方微博 | 高级检索  
   检索      


3D Bioprinted cancer models: Revolutionizing personalized cancer therapy
Authors:Robin Augustine  Sumama Nuthana Kalva  Rashid Ahmad  Alap Ali Zahid  Shajia Hasan  Ajisha Nayeem  Lana McClements  Anwarul Hasan
Institution:1. Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, 2713 Doha, Qatar;2. Biomedical Research Center (BRC), Qatar University, PO Box 2713 Doha, Qatar;3. Department of Biotechnology, St. Mary''s College, Thrissur, 680020, Kerala, India;4. School of Life Sciences, Faculty of Science, University of Technology Sydney, 2007, NSW, Australia
Abstract:After cardiovascular disease, cancer is the leading cause of death worldwide with devastating health and economic consequences, particularly in developing countries. Inter-patient variations in anti-cancer drug responses further limit the success of therapeutic interventions. Therefore, personalized medicines approach is key for this patient group involving molecular and genetic screening and appropriate stratification of patients to treatment regimen that they will respond to. However, the knowledge related to adequate risk stratification methods identifying patients who will respond to specific anti-cancer agents is still lacking in many cancer types. Recent advancements in three-dimensional (3D) bioprinting technology, have been extensively used to generate representative bioengineered tumor in vitro models, which recapitulate the human tumor tissues and microenvironment for high-throughput drug screening. Bioprinting process involves the precise deposition of multiple layers of different cell types in combination with biomaterials capable of generating 3D bioengineered tissues based on a computer-aided design. Bioprinted cancer models containing patient-derived cancer and stromal cells together with genetic material, extracellular matrix proteins and growth factors, represent a promising approach for personalized cancer therapy screening. Both natural and synthetic biopolymers have been utilized to support the proliferation of cells and biological material within the personalized tumor models/implants. These models can provide a physiologically pertinent cell–cell and cell–matrix interactions by mimicking the 3D heterogeneity of real tumors. Here, we reviewed the potential applications of 3D bioprinted tumor constructs as personalized in vitro models in anticancer drug screening and in the establishment of precision treatment regimens.
Keywords:Cancer  Cancer models  3D cancer models  Bioprinting  Personalized medicine
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号