首页 | 本学科首页   官方微博 | 高级检索  
     


In Vivo and in Vitro Evidence for Biochemical Coupling of Reactions Catalyzed by Lysophosphatidylcholine Acyltransferase and Diacylglycerol Acyltransferase
Authors:Xue Pan  Guanqun Chen  Michael Kazachkov  Michael S. Greer  Kristian Mark P. Caldo  Jitao Zou  Randall J. Weselake
Affiliation:From the Alberta Innovates Phytola Centre, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada and ;§National Research Council Canada, Saskatoon, Saskatchewan S7N 0W9, Canada
Abstract:Seed oils of flax (Linum usitatissimum L.) and many other plant species contain substantial amounts of polyunsaturated fatty acids (PUFAs). Phosphatidylcholine (PC) is the major site for PUFA synthesis. The exact mechanisms of how these PUFAs are channeled from PC into triacylglycerol (TAG) needs to be further explored. By using in vivo and in vitro approaches, we demonstrated that the PC deacylation reaction catalyzed by the reverse action of acyl-CoA:lysophosphatidylcholine acyltransferase (LPCAT) can transfer PUFAs on PC directly into the acyl-CoA pool, making these PUFAs available for the diacylglycerol acyltransferase (DGAT)-catalyzed reaction for TAG production. Two types of yeast mutants were generated for in vivo and in vitro experiments, respectively. Both mutants provide a null background with no endogenous TAG forming capacity and an extremely low LPCAT activity. In vivo experiments showed that co-expressing flax DGAT1-1 and LPCAT1 in the yeast quintuple mutant significantly increased 18-carbon PUFAs in TAG with a concomitant decrease of 18-carbon PUFAs in phospholipid. We further showed that after incubation of sn-2-[14C]acyl-PC, formation of [14C]TAG was only possible with yeast microsomes containing both LPCAT1 and DGAT1-1. Moreover, the specific activity of overall LPCAT1 and DGAT1-1 coupling process exhibited a preference for transferring 14C-labeled linoleoyl or linolenoyl than oleoyl moieties from the sn-2 position of PC to TAG. Together, our data support the hypothesis of biochemical coupling of the LPCAT1-catalyzed reverse reaction with the DGAT1-1-catalyzed reaction for incorporating PUFAs into TAG. This process represents a potential route for enriching TAG in PUFA content during seed development in flax.
Keywords:phosphatidylcholine   phospholipid metabolism   polyunsaturated fatty acid (PUFA)   triacylglycerol   yeast   DGAT   LPCAT   Linum usitatissimum   flax   triacylglycerol biosynthesis
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号