Mechanisms of release and renal tubular action of atrial natriuretic factor |
| |
Authors: | H Sonnenberg |
| |
Abstract: | ![]() Inasmuch as atrial natriuretic factor (ANF) is apparently involved causally in the renal response to acute hypervolemia, it became of interest to study cellular mechanisms of release and renal tubular action. To study release mechanisms, freshly excised rat heart atria were incubated in vitro. Activation of the cellular adenylate cyclase system by either beta-adrenergic stimulation or the vasopressin analog deamino-8-D-arginine vasopressin did not result in ANF release. By contrast, activation of the polyphosphoinositide system by alpha-adrenergic stimulation or stimulation of the V1-type vasopressin receptors, and by a calcium ionophore or active phorbol ester, significantly increased natriuretic activity in the medium and reduced it in tissue. It is concluded, therefore, that activation of this latter system is the mechanism for ANF secretion from atrial myocytes. To test the effect of ANF on tubular transport in the medullary collecting duct, microcatheterization was used in rats before and during i.v. infusion of synthetic atrial peptide (23 amino acids). It was found that tubular delivery of salt to this part of the nephron was increased, and that reabsorption in the duct itself was reduced. In control experiments, increased delivery was associated with proportionately increased reabsorption, which demonstrated glomerulotubular balance in the nephron segment under normal conditions. The natriuretic effect of ANF, therefore, was not caused solely by enhanced tubular load, but included specific inhibition of duct sodium reabsorption as an essential feature of the renal response. |
| |
Keywords: | |
|
|