Pirh2 E3 Ubiquitin Ligase Targets DNA Polymerase Eta for 20S Proteasomal Degradation |
| |
Authors: | Yong-Sam Jung Gang Liu Xinbin Chen |
| |
Affiliation: | Center for Comparative Oncology, University of California, Davis, California 95616 |
| |
Abstract: | DNA polymerase eta (PolH), a Y family translesion polymerase, is required for repairing UV-induced DNA damage, and loss of PolH is responsible for early onset of malignant skin cancers in patients with xeroderma pigmentosum variant (XPV), an autosomal recessive disorder. Here, we show that PolH, a target of the p53 tumor suppressor, is a short-half-life protein. We found that PolH is degraded by proteasome, which is enhanced upon UV irradiation. We also found that PolH interacts with Pirh2 E3 ligase, another target of the p53 tumor suppressor, via the polymerase-associated domain in PolH and the RING finger domain in Pirh2. In addition, we show that overexpression of Pirh2 decreases PolH protein stability, whereas knockdown of Pirh2 increases it. Interestingly, we found that PolH is recruited by Pirh2 and degraded by 20S proteasome in a ubiquitin-independent manner. Finally, we observed that Pirh2 knockdown leads to accumulation of PolH and, subsequently, enhances the survival of UV-irradiated cells. We postulate that UV irradiation promotes cancer formation in part by destabilizing PolH via Pirh2-mediated 20S proteasomal degradation.Polymerase eta (PolH) is a member of the Y family translesion DNA polymerases and capable of translesion synthesis over UV-induced cyclobutane pyrimidine dimers (CPDs) and (6-4) photoproducts (7). PolH is also involved in double-stranded break repair via homologous recombination (15, 23). Human PolH is the product of the xeroderma pigmentosum variant (XPV) gene (14, 22). XPV, an autosomal recessive disorder, exhibits clinical phenotypes of extreme sun sensibility, cutaneous and ocular deterioration, and early onset of malignant skin cancers. Thus, it is postulated that loss of PolH is responsible for accumulation of UV-induced lesions, which lead to early onset of multiple skin cancers in XPV patients.The ubiquitin-dependent degradation pathway plays a key role in many cellular processes, including cell proliferation, differentiation, and DNA repair (6, 10, 11). The pathway involves multiple enzymatic reactions catalyzed by a single ubiquitin-activating enzyme (E1), several ubiquitin-conjugating enzymes (E2s), and a large number of ubiquitin ligases (E3s). Protein polyubiquitination serves as a signal for rapid degradation by 26S proteasome, whereas monoubiquitination modulates protein function (3, 30). 26S proteasome is a multisubunit protease consisting of a core 20S proteasome and two 19S regulatory particles (24). 20S proteasome on its own is a broad-spectrum ATP- and ubiquitin-independent protease. 19S regulatory particles recognize and thread polyubiquitinated proteins into 20S proteasome for degradation in an ATP-dependent manner.The RING-H2 type E3 ligase (Pirh2) is regulated by p53 and targets p53 for degradation (19). Recently, studies showed that Pirh2 interacts with and potentially serves as an E3 ligase for TIP60 (21) and p27Kip1 (8). Here, we show that PolH protein stability is reduced by UV irradiation via Pirh2 in a ubiquitin-independent manner. We also showed that upon knockdown of Pirh2, PolH is accumulated and, consequently, desensitizes cells to UV-induced cell killing. Based on these observations, we postulate that UV irradiation promotes cancer formation in part by destabilizing PolH via Pirh2-mediated 20S proteasome degradation. |
| |
Keywords: | |
|
|