首页 | 本学科首页   官方微博 | 高级检索  
     


Evaluation of elemental allelopathy in Acroptilon repens (L.) DC. (Russian Knapweed)
Authors:Christo Morris  Christopher A. Call  Thomas A. Monaco  Paul R. Grossl  Steve A. Dewey
Affiliation:(1) Department of Wildland Resources, Utah State University, 5230 Old Main Hill, Logan Utah, USA;(2) Forage and Range Research Laboratory USDA-ARS, Logan, UT, USA;(3) Department of Plants, Soils and Biometeorology, Utah State University, Logan, UT, USA
Abstract:Although Acroptilon repens (L.) DC. (Russian knapweed) is known to concentrate zinc (Zn) in upper soil layers, the question of whether the elevated Zn has an allelopathic effect on restoration species has not been addressed. Experiments were conducted to investigate whether soils collected from within infestations of A. repens (high-Zn) inhibit the germination or growth and development of desirable restoration species, compared to soils collected adjacent to an A. repens infestation (low-Zn). Four bioassay species [Sporobolus airoides (Torrey) Torrey (alkali sacaton), Pseudoroegneria spicata (Pursh) A. Love (bluebunch wheatgrass), Psathyrostachys juncea (Fischer) Nevski (Russian wildrye) and A. repens] were germinated in a growth chamber and grown in a greenhouse in both soils and received treatments for the alleviation of Zn toxicity (P, Fe, Fe-oxide, and soil mixing) to isolate the effects of elevated soil Zn on plant performance. Percent germination, total plant biomass, tiller and stem number, inflorescence number, and tissue metal levels were compared among soil types and treatments for each species. There was no evidence from any of the indicators measured that high-Zn soils reduced plant performance, compared to low-Zn soils. Tissue Zn levels barely approached the lower range of phytotoxic levels established for native grasses. Older plants with longer exposure times may accumulate higher Zn concentrations. S. airoides and A. repens both had higher biomass in the high-Zn soil, most likely due to increased macronutrient (N and P) availability. As the Zn levels in the soils used in this study were much higher than any levels previously reported in soils associated with A. repens, it is unlikely that the elevation of soil Zn by A. repens will hinder germination or growth and development of desirable grasses during establishment.
Keywords:Iron  Phosphorus  Plant interference  Plant-soil feedback  Restoration  Weed invasion  Zinc toxicity
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号