首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Selective reactivation of steroid hydroxylases following dissociation of the isosafrole metabolite complex with rat hepatic cytochrome P-450
Authors:M Murray  L Zaluzny  G C Farrell
Abstract:In order to elucidate the isozyme specificity of complex formation between cytochrome P-450 and the isosafrole metabolite the effect of complex dissociation on different steroid hydroxylation pathways was studied in hepatic microsomal fractions. Isosafrole induction was found to increase the 16 beta- and 7 alpha-hydroxylation of androst-4-ene-3,17-dione approximately 2.8- and 1.7-fold, respectively, whereas the 16 alpha-hydroxylation pathway was decreased to about one-quarter of control activity; 6 beta-hydroxylation was unchanged from control activity. More striking changes were apparent following dissociation of the isosafrole metabolite from its complex with ferricytochrome P-450 by the steroid substrate. Thus an approximate fourfold elevation of 16 beta-hydroxylase activity was observed after displacement and 6 beta-hydroxylation increased about twofold; 7 alpha-hydroxylase activity was decreased to 0.75-fold of undisplaced activity and 16 alpha-hydroxylase activity was unchanged. These data provide convincing evidence that at least two forms of phenobarbital-inducible cytochrome P-450 (cytochromes P-450PB-B and P-450PB/PCN-E) are present to some extent in a catalytically inactive complexed state in isosafrole-induced rat hepatic microsomes. Furthermore, there is now evidence to suggest that the constitutive isozymes cytochrome P-450UT-A and cytochrome P-450UT-F are not complexed to any degree in hepatic microsomes from isosafrole-induced rats.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号