首页 | 本学科首页   官方微博 | 高级检索  
     


Mechanism of interferon action: functionally distinct RNA-binding and catalytic domains in the interferon-inducible, double-stranded RNA-specific adenosine deaminase.
Authors:Y Liu and C E Samuel
Abstract:The 1,226-amino-acid sequence of the interferon-inducible double-stranded RNA-specific adenosine deaminase (dsRAD) contains three copies (RI, RII, and RIII) of the highly conserved subdomain R motif commonly found in double-stranded RNA-binding proteins. We have examined the effects of equivalent site-directed mutations in each of the three R-motif copies of dsRAD on RNA-binding activity and adenosine deaminase enzyme activity. Mutations of the R motifs were analyzed alone as single mutants and in combination with each other. The results suggest that the RIII copy is the most important of the three R motifs for dsRAD activity and that the RII copy is the least important. The RIII mutant lacked detectable enzymatic activity and displayed greatly diminished RNA-binding activity. Site-directed mutations within the highly conserved CHAE sequence of the postulated C-terminal deaminase catalytic domain destroyed enzymatic activity but did not affect RNA-binding activity. These results indicate that the three copies of the RNA-binding R subdomain are likely functionally distinct from each other and also from the catalytic domain of dsRAD.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号