首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Defective autophagy in multidrug resistant cells may lead to growth inhibition by BH3‐mimetic gossypol
Authors:Jun‐Ho Ahn  Gun‐Hee Jang  Michael Lee
Institution:Division of Life Sciences, College of Life Sciences and Bioengineering, University of Incheon, Incheon, Republic of Korea
Abstract:The clinical efficacy of many chemotherapeutic agents has been reduced due to the development of drug resistance. In this article, we aimed to validate gossypol, a natural BH3 mimetic found in cottonseeds, as a potential therapeutic to overcome multidrug resistance (MDR). Gossypol was found to retain its efficacy in v‐Ha‐ras‐transformed NIH 3T3 cells that overexpressed P‐glycoprotein (Ras‐NIH 3T3/Mdr), which was similar to the efficacy observed in their parental counterparts (Ras‐NIH 3T3). A rhodamine assay revealed that the alteration of MDR activity did not contribute to the cytotoxic effect of gossypol. Gossypol caused a G2/M arrest by the induction of p21Cip1 and the down‐regulation of p27Kip1 expression in Ras‐NIH 3T3 cells, whereas no significant G2/M arrest was exhibited in Ras‐NIH 3T3/Mdr cells. Surprisingly, a 48‐h treatment with gossypol induced apoptotic cell death in Ras‐NIH 3T3 cells; however, gossypol induced both apoptosis and necrosis in Ras‐NIH 3T3/Mdr cells, as determined with flow cytometry analysis. More notably, gossypol preferentially induced autophagy in Ras‐NIH 3T3 cells but not in Ras‐NIH 3T3/Mdr cells. Coimmunoprecipitation and flow cytometric analysis revealed that gossypol‐induced autophagy is independent of the dissociation of Beclin 1 from Bcl‐2 in Ras‐NIH 3T3 cells. Taken together, these results suggest that the antiproliferative activity of gossypol appears to be due to cell‐cycle arrest at the G2/M phase, with the induction of apoptosis in Ras‐NIH 3T3 cells. In addition, defective autophagy might contribute to apoptotic and necrotic cell death in response to gossypol in Ras‐NIH 3T3/Mdr cells. J. Cell. Physiol. 228: 1496–1505, 2013. © 2012 Wiley Periodicals, Inc.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号