Affiliation: | (1) Department of Biotechnology, University of Medicine and Pharmacy, University Street 16, 6600 Iasi, Romania;(2) Department of Biochemical Engineering, Technical University Gh. Asachi of Iasi, D. Mangeron Avenue 71, 6600 Iasi, Romania |
Abstract: | Oxygen mass transfer represents the most important parameter involved in the design and operation of mixing-sparging equipment for bioreactors. It can be described and analyzed by means of the mass transfer coefficient, kLa. The kLa values are affected by many factors such as geometrical and operational characteristics of the vessels, media composition, type, concentration and microorganism morphology, and biocatalysts properties. The efficiency of oxygen transfer could be enhanced by adding oxygen-vectors in broths, such as hydrocarbons or fluorocarbons, without increasing the energy consumption for mixing or aeration. The experimental results obtained for simulated broths indicated a considerable increase of kLa in the presence of n-dodecane, and the existence of a certain value of n-dodecane concentration that corresponds to a maximum mass transfer rate of oxygen. The magnitude of the positive effect of n-dodecane depends both on the broths characteristics and operational conditions of the bioreactor.Notation d stirrer diameter, mm - d oxygen electrode diameter, mm - D bioreactor diameter, mm - h distance from the inferior stirrer to the bioreactor bottom, mm - H bioreactor height, mm - kLa oxygen mass transfer coefficient, s-1 - l impeller blade length, mm - I oxygen electrode immersed length, mm - P power consumption for mixing of non-aerated broths, W - Pa power consumption for mixing of aerated broths, W - (Pa/V) specific power input, W/m3 - s baffle width, mm - vS superficial air velocity, m/s - V volume of medium, m3 - w impeller blade height, mm - volumetric fraction of oxygen-vector - a apparent viscosity, Pa*s - density, kg/m3 |