首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Arabidopsis peroxidase AtPRX53 influences cell elongation and susceptibility to Heterodera schachtii
Authors:Jing Jin  Tarek Hewezi  Thomas J Baum
Institution:1.Department of Plant Pathology and Microbiology, Iowa State University; Ames, IA USA;2.Molecular, Cellular and Developmental Biology Graduate Program; Iowa State University; Ames, IA USA
Abstract:Cyst nematodes establish and maintain feeding sites (syncytia) in the roots of host plants by altering expression of host genes. Among these genes are members of the large gene family of class III peroxidases, which have reported functions in a variety of biological processes. In this study, we used Arabidopsis-Heterodera schachtii as a model system to functionally characterize peroxidase 53 (AtPRX53). Promoter assays showed that under non-infected conditions AtPRX53 is expressed mainly in the root, the hypocotyl and the base of the pistil. Under infected conditions, the AtPRX53 promoter showed upregulation at the nematode penetration sites and in their migration paths. Interestingly, strong GUS activity was observed in H. schachtii-induced syncytia during the early stage of infection and remained strong in the syncytia of third-stage juveniles. Also, AtPRX53 showed upregulation in response to wounding and jasmonic acid treatments. Manipulation of AtPRX53 expression through overexpression and knockout mutation affected both plant morphology and nematode susceptibility. While AtPRX53 overexpression lines exhibited short hypocotyls, aberrant flower development and reduced nematode susceptibility to H. schachtii, the atprx53 mutant showed long hypocotyls and a 3-carpel silique phenotype as well as a non significant increase of nematode susceptibility. Taken together these data, therefore, indicate diverse roles of AtPRX53 in the wound response, flower development and syncytium formation.
Keywords:Arabidopsis  class III peroxidase  cyst nematode    GUS  qPCR
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号