首页 | 本学科首页   官方微博 | 高级检索  
     


Properties and the Cytoskeletal Control of Ca++-independent Large Conductance K+ Channels in Neonatal Rat Hippocampal Neurons
Authors:I. Benz  D.K. Meyer  M. Kohlhardt
Affiliation:(1) Physiological Institute of the University Freiburg, Hermann-Herder-Str. 7, D-79104 Freiburg/Br, DE;(2) Pharmacological Institute of the University Freiburg, Katharinen Str., D-79104 Freiburg/Br, DE
Abstract:A member of the family of Ca++-independent large conductance K+ channels (termed BK channels) was identified in patch clamp experiments with cultured neonatal rat hippocampal neurons. Permeation was characterized (at 5 mmol/l external, 140 mmol/l internal K+; 135 mmol/l external Na+) by a conductance of 107 pS, a ratio PNa/PK∼ 0.01, and outward rectification near the reversal potential. Channel activity was not voltage-dependent, could not be reduced by internal TEA or by a shift of internal pH from 7.4 to 6.8, i.e., discriminating features within the Ca++-independent BK channel family. Cytosolic proteolysis abolished the functional state of hippocampal Ca++-independent BK channels, in contrast to the pronase resistance of hippocampal Ca++-activated BK channels which suggests structural dissimilarities between these related channels. Cytoskeletal alterations had an activating influence on Ca++-independent BK channels and caused a 3–4-fold rise in P o , but patch excision and channel isolation from the natural environment provoked the strongest increase in P o , from 0.07 ± 0.03 to 0.73 ± 0.04. This activation process operated slowly, on a minute time scale and can be most easily explained with the loss of a membrane-associated inhibitory particle. Once activated, Ca++-independent BK channels reacted sensitively to a Mg-ATP supplemented brain tissue extract with a P o decline, from 0.60 ± 0.06 to 0.10 ± 0.05. Heated extracts failed to induce significant channel inhibition, providing evidence for a heat-unstable molecule with reassociates with the internal channel surface to reestablish channel inhibition. A dualistic channel control, by this membrane-associated molecule and by the cytoskeleton seems possible. Received: 16 July 1997/Revised: 3 November 1997
Keywords:: Maxi K+ channels —   Colchicine —   cytochalasin B —   Cytoskeleton
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号