首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Biodiversity and resilience of arthropod communities after fire disturbance in temperate forests
Authors:Marco Moretti  Peter Duelli  Martin K Obrist
Institution:(1) WSL Swiss Federal Research Institute, Sottostazione Sud delle Alpi, 6501 Bellinzona, Switzerland;(2) WSL Swiss Federal Research Institute, 8903 Birmensdorf/ZH, Switzerland;(3) WSL, Sottostazione Sud delle Alpi, Via Belsoggiorno 22, 6501 Bellinzona, Switzerland
Abstract:Changes in ecosystem functions following disturbances are of central concern in ecology and a challenge for ecologists is to understand the factors that affect the resilience of community structures and ecosystem functions. In many forest ecosystems, one such important natural disturbance is fire. The aim of this study was to understand the variation of resilience in six functional groups of invertebrates in response to different fire frequencies in southern Switzerland. We measured resilience by analysing arthropod species composition, abundance and diversity in plots where the elapsed time after single or repeated fires, as determined by dendrochronology, varied. We compared data from these plots with data from plots that had not burned recently and defined high resilience as the rapid recovery of the species composition to that prior to fire. Pooling all functional groups showed that they were more resilient to single fires than to repeated events, recovering 6–14 years after a single fire, but only 17–24 years after the last of several fires. Flying zoophagous and phytophagous arthropods were the most resilient groups. Pollinophagous and epigaeic zoophagous species showed intermediate resilience, while ground-litter saprophagous and saproxylophagous arthropods clearly displayed the lowest resilience to fire. Their species composition 17–24 years post-burn still differed markedly from that of the unburned control plots. Depending on the fire history of a forest plot, we found significant differences in the dominance hierarchy among invertebrate species. Any attempt to imitate natural disturbances, such as fire, through forest management must take into account the recovery times of biodiversity, including functional group composition, to ensure the conservation of multiple taxa and ecosystem functions in a sustainable manner.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .
Keywords:Fire regime  Succession  Invertebrates  Functional groups  Switzerland
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号