Activation of spinach chloroplast glyceraldehyde 3-phosphate dehydrogenase: effect of glycerate 1,3-bisphosphate |
| |
Authors: | Paolo Trost Sandra Scagliarini Vincenzo Valenti Paolo Pupillo |
| |
Affiliation: | (1) Dipartimento di Biologia, Università di Bologna, Via Irnerio 42, I-40126 Bologna, Italy;(2) Dipartimento di Biologia Vegetale, Università di Perugia, Borgo XX Giugno 74, I-06121 Perugia, Italy |
| |
Abstract: | Spinach (Spinacia oleracea L.) chloroplast NAD(P)-dependent glyceraldehyde 3-phosphate dehydrogenase (NAD(P)-GAPDH; EC 1.2.1.13) was purified. The association state of the protein was monitored by fast protein liquid chromatography-Superose 12 gel filtration. Protein chromatographed in the presence of NADP+ and dithiothreitol consisted of highly NADPH-active protomers of 160 kDa; otherwise, it always consisted of a 600-kDa oligomer (regulatory form) favoured by the addition of NAD+ in buffers and with low NADPH-dependent activity (ratio of activities with NADPH versus NADH of 0.2–0.4). Glycerate 1,3-bisphosphate (BPGA) was prepared enzymatically using rabbit-muscle NAD-GAPDH, and purified. Among known modulators of spinach NAD(P)-GAPDH, BPGA is the most effective on a molar basis in stimulating NADPH-activity of dark chloroplast extracts and purified NAD(P)-GAPDH (activation constant, Ka= 12 M). It also causes the enzyme to dissociate into 160-kDa protomers. The Km of BPGA both with NADPH or NADH as coenzyme is 4–7 M. NAD+ and NADH are inhibitory to the activation process induced by BPGA. This compound, together with NADP(H) and ATP belongs to a group of substrate-modifiers of the NADPH-activity and conformational state of spinach NAD(P)-GAPDH, all characterized by Ka values three- to tenfold higher than the Km. Since NADP(H) is largely converted to NAD(H) in darkened chloroplasts Heineke et al. 1991, Plant Physiol. 95, 1131–1137, it is proposed that NAD+ promotes NAD(P)-GAPDH association into a regulatory conformer with low NADPH-activity during dark deactivation. The process is reversed in the light by BPGA and other substrate-modifiers whose concentration increases during photosynthesis, in addition to reduced thioredoxin.Abbreviations BPGA glycerate 1,3-bisphosphate - Chl chlorophyll - DTT dithiothreitol - FPLC fast protein liquid chromatography - NAD(P)-GAPDH glyceraldehyde 3-phosphate dehydrogenase, NAD(P)-dependent - 3-PGA glyerate 3-phosphate - PGK phosphoglycerate kinase - Prt protein - Tricine N-tris (hydroxymethyl) methyl-glycineThis work was supported by grants from the Ministero dell'Università e della Ricerca Scientifica e Technologica in years 1990–1991. We are grateful to Dr. G. Branlant (Laboratoire d'Enzymologie et de Génie Génétique, Vandoeuvre les Nancy, France) for introducing us to the BPGA purification procedure. |
| |
Keywords: | Calvin cycle Glyceraldehyde 3-phosphate dehydrogenase, NAD(P)-dependent Glycerate 1,3-bisphosphate Photosynthesis Spinacia |
本文献已被 SpringerLink 等数据库收录! |
|