首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of endplate calcification and mechanical deformation on the distribution of glucose in intervertebral disc: a 3D finite element study
Authors:Jackson Alicia R  Huang Chun-Yuh  Gu Wei Yong
Affiliation:Department of Biomedical Engineering, Tissue Biomechanics Laboratory, University of Miami, Coral Gables, FL 33124, USA.
Abstract:
The intervertebral disc (IVD) is avascular, receiving nutrition from surrounding vasculature. Theoretical modelling can supplement experimental results to understand nutrition to IVD more clearly. A new, 3D finite element model of the IVD was developed to investigate effects of endplate calcification and mechanical deformation on glucose distributions in IVD. The model included anatomical disc geometry, non-linear coupling of cellular metabolism with pH and oxygen concentration and strain-dependent properties of the extracellular matrix. Calcification was simulated by reducing endplate permeability (~79%). Mechanical loading was applied based on in vivo disc deformation during the transition from supine to standing positions. Three static strain conditions were considered: supine, standing and weight-bearing standing. Minimum glucose concentrations decreased 45% with endplate calcification, whereas disc deformation led to a 4.8-63% decrease, depending on the endplate condition (i.e. normal vs. calcified). Furthermore, calcification more strongly affected glucose concentrations in the nucleus compared to the annulus fibrous region. This study provides important insight into nutrient distributions in IVD under mechanical deformation.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号