首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Voltage-dependent block by saxitoxin of sodium channels incorporated into planar lipid bilayers.
Authors:R J French  J F Worley  rd  and B K Krueger
Institution:R J French, J F Worley, 3rd, and B K Krueger
Abstract:We have previously studied single, voltage-dependent, saxitoxin-(STX) blockable sodium channels from rat brain in planar lipid bilayers, and found that channel block by STX was voltage-dependent. Here we describe the effect of voltage on the degree of block and on the kinetics of the blocking reaction. From their voltage dependence and kinetics, it was possible to distinguish single-channel current fluctuations due to blocking and unblocking of the channels by STX from those caused by intrinsic channel gating. The use of batrachotoxin (BTX) to inhibit sodium-channel inactivation allowed recordings of stationary fluctuations over extended periods of time. In a range of membrane potentials where the channels were open greater than 98% of the time, STX block was voltage-dependent, provided sufficient time was allowed to reach a steady state. Hyperpolarizing potentials favored block. Both association (blocking) and dissociation (unblocking) rate constants were voltage-dependent. The equilibrium dissociation constants computed from the association and dissociation rate constants for STX block were about the same as those determined from the steady-state fractional reduction in current. The steepness of the voltage dependence was consistent with the divalent toxin sensing 30-40% of the transmembrane potential.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号