Herbivory,current velocity and algal regrowth: how does periphyton grow when the grazers have gone? |
| |
Authors: | TODD WELLNITZ N. LEROY POFF |
| |
Affiliation: | Department of Biology, University of Wisconsin, Eau Claire, WI, U.S.A.; Department of Biology, Colorado State University, Fort Collins, CO, U.S.A. |
| |
Abstract: | 1. An experiment conducted in streamside channels was used to document the regrowth of grazed periphyton. Our objective was to determine the relative importance of current velocity, grazing duration, and grazer type in shaping the trajectory of algal and periphytic regrowth. 2. The grazing mayflies Baetis bicaudatus and Epeorus longimanus were used alone and in combination to create three grazing treatments at slow, medium and fast current (2–5, 15–20 and 30–40 cm s?1, respectively). Duration treatments consisted of 2, 4, 6, 8, 10 days of grazing. Chlorophyll a and ash‐free dry mass (AFDM) accumulation on grazed tiles was measured (as periphytic AFDM and chlorophyll a, respectively) at 2, 4, 6, 8 and 10 days following the removal of grazers. 3. Chlorophyll a and AFDM was best predicted by interactions between current velocity, grazing duration and regrowth time. 4. The two grazer species did not differ in their effect on Chlorophyll a and AFDM during the period of periphytic regrowth that followed grazing. 5. Longer grazing duration reduced periphytic biomass, but also accelerated algal regrowth, and this growth enhancement was more pronounced at slower current velocities. 6. Data from this study suggest that herbivory can have important historical effects on periphytic accrual. |
| |
Keywords: | stream herbivory current velocity periphytic removal Baetis Epeorus historical grazing effects |
|
|