首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Combined effects of temperature and cadmium on developmental parameters and biomarker responses in zebrafish (Danio rerio) embryos
Institution:1. University of North Dakota, Biology Department, Grand Forks, ND 58202-9019, USA;2. University of Arizona, Department of Ecology and Evolutionary Biology, Tucson, AZ 85721, USA;3. University of North Texas, Department of Biological Sciences, Denton, TX 76203, USA;1. Department of Cell & System Biology, University of Toronto;2. Department of Psychology, University of Toronto Mississauga
Abstract:To determine the interactions between temperature and cadmium on zebrafish (Danio rerio) development, fertilized eggs were exposed to combinations of three temperature levels (21 °C, 26 °C, and 33 °C) and six cadmium concentrations (0, 0.25, 0.5, 2.0, 5.0, and 10.0 mg/L). Endpoints used included LC50 value (48 h), developmental rate, mortality, heart rate, hatching success, liver histopathology, embryo abnormalities, and heat shock protein (hsp) induction. Results showed a significant acceleration in the developmental rate with increasing temperature and irrespective of the presence of cadmium. Data on LC50 and ELS-test revealed that simultaneous exposure to both cadmium ions and cold stress (21 °C) was highly detrimental to growing embryos, causing a pronounced mortality and a significant reduction in average heart rate and embryo hatchability. In contrast, no similar reactions to cadmium were observed in pre-hatched embryos exposed to both control (26 °C) and high temperature (33 °C), and this can be explained by the significantly higher expression of hsp (hsp70) in embryos at these temperatures. Upon hatching, however, the larvae showed increased sensitivity to cadmium. The severity of malformations in the post-hatched larvae was in the order: hot cadmium stress>cold cadmium stress>cadmium stress alone>no stress at all. Liver histopathology as well as depletion in glycogen reserves exhibited greater severity with increasing cadmium concentration, irrespective of temperature. The present study confirms that temperature effectively confounds cadmium toxicity and needs to be considered for the accurate prediction and assessment of cadmium-induced toxicity in fish.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号