首页 | 本学科首页   官方微博 | 高级检索  
     


Antioxidant responses and lipid peroxidation following intranasal 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration in rats: increased susceptibility of olfactory bulb
Authors:Franco Jeferson  Prediger Rui D S  Pandolfo Pablo  Takahashi Reinaldo N  Farina Marcelo  Dafre Alcir L
Affiliation:Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88049-900, Florianópolis-SC, Brazil.
Abstract:We evaluated an alternative method to investigate a possible involvement of environmental toxins in the pathology of Parkinson's disease (PD). There is considerable evidence supporting the role of oxidative stress in the toxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a neurotoxin largely used to modeling PD in primates and rodents. We have recently demonstrated that rats treated with intranasal (i.n.) infusion of MPTP suffer from progressive signs of PD that are correlated with time-dependent degeneration in dopaminergic neurons. In the present study, we investigated the time-dependent (2 h to 7 days) effect of a single i.n. administration of MPTP (0.1 mg/nostril) on the glutathione-related antioxidant status and lipid peroxidation (TBARS) in the adult Wistar rat brain. The effects were more pronounced in the olfactory bulb at 6 h after i.n. MPTP administration, as indicated by an increase in TBARS and total glutathione (GSH-t) levels, and also in the gamma-glutamyl transpeptidase (GGT) activity. Increased levels of TBARS, GSH-t and GGT activity were also observed at 6 h post-MPTP infusion in some structures (e.g. striatum, hippocampus and prefrontal cortex). No difference regarding glutathione reductase activity was observed in any of the brain structures analyzed, while a marked decrease in glutathione peroxidase activity was specifically observed in the substantia nigra 7 days after MPTP treatment. These results demonstrate that a single i.n. infusion of MPTP in rats induces significant alterations in the brain antioxidant status and lipid peroxidation, reinforcing the notion that the olfactory system represents a particularly sensitive route for the transport of neurotoxins into the central nervous system that may be related to the etiology of PD.
Keywords:Parkinson's disease   MPTP   Oxidative stress   Glutathione   Lipid peroxidation   γ-Glutamyl transpeptidase   Rat
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号