首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Improved vitrification solutions based on the predictability of vitrification solution toxicity
Authors:Fahy Gregory M  Wowk Brian  Wu Jun  Paynter Sharon
Institution:21st Century Medicine, Inc., 10844 Edison Court, Rancho Cucamonga, CA 91730, USA. gfahy@21cm.com
Abstract:Long-term preservation of complex engineered tissues and organs at cryogenic temperatures in the absence of ice has been prevented to date by the difficulty of discovering combinations of cryoprotectants that are both sufficiently non-toxic and sufficiently stable to allow viability to be maintained and ice formation to be avoided during slow cooling to the glass transition temperature and subsequent slow rewarming. A new theory of the origin of non-specific cryoprotectant toxicity was shown to account, in a rabbit renal cortical slice model, for the toxicities of 20 vitrification solutions and to permit the design of new solutions that are dramatically less toxic than previously known solutions for diverse biological systems. Unfertilized mouse ova vitrified with one of the new solutions were successfully fertilized and regained 80% of the absolute control (untreated) rate of development to blastocysts, whereas ova vitrified in VSDP, the best previous solution, developed to blastocysts at a rate only 30% of that of controls. Whole rabbit kidneys perfused at -3 degrees C with another new solution at a concentration of cryoprotectant (8.4M) that was previously 100% lethal at this temperature exhibited no damage after transplantation and immediate contralateral nephrectomy. It appears that cryoprotectant solutions that are composed to be at the minimum concentrations needed for vitrification at moderate cooling rates are toxic in direct proportion to the average strength of water hydrogen bonding by the polar groups on the permeating cryoprotectants in the solution. Vitrification solutions that are based on minimal perturbation of intracellular water appear to be superior and provide new hope that the successful vitrification of natural organs as well as tissue engineered or clonally produced organ and tissue replacements can be achieved.
Keywords:Cryoprotective agents  Organ preservation  Engineered tissues  Tissue banking  Dimethyl sulfoxide  Formamide  Ethylene glycol  Ice blockers  Polyvinyl alcohol  Polyglycerol  Polyvinylpyrrolidone  LM5  TransSend  X-1000  VM3  9v  Z-1000
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号