首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The nucleotide‐bound/substrate‐bound conformation of the Mycoplasma genitalium DnaK chaperone
Authors:Maria Adell  Bárbara M Calisto  Ignacio Fita  Luca Martinelli
Institution:1. Instituto de Biología Molecular de Barcelona (IBMB‐CSIC), Parc Científic de Barcelona, Barcelona, Spain;2. Structural Biology Group, European Synchrotron Radiation Facility, CS 40220, Grenoble, France and ALBA Synchrotron, Carrer de la Llum 2‐26, 08290 Cerdanyola del Vallès, Barcelona, Spain
Abstract:Hsp70 chaperones keep protein homeostasis facilitating the response of organisms to changes in external and internal conditions. Hsp70s have two domains—nucleotide binding domain (NBD) and substrate binding domain (SBD)—connected by a conserved hydrophobic linker. Functioning of Hsp70s depend on tightly regulated cycles of ATP hydrolysis allosterically coupled, often together with cochaperones, to the binding/release of peptide substrates. Here we describe the crystal structure of the Mycoplasma genitalium DnaK (MgDnaK) protein, an Hsp70 homolog, in the noncompact, nucleotide‐bound/substrate‐bound conformation. The MgDnaK structure resembles the one from the thermophilic eubacteria DnaK trapped in the same state. However, in MgDnaK the NBD and SBD domains remain close to each other despite the lack of direct interaction between them and with the linker contacting the two subdomains of SBD. These observations suggest that the structures might represent an intermediate of the protein where the conserved linker binds to the SBD to favor the noncompact state of the protein by stabilizing the SBDβ‐SBDα subdomains interaction, promoting the capacity of the protein to sample different conformations, which is critical for proper functioning of the molecular chaperone allosteric mechanism. Comparison of the solved structures indicates that the NBD remains essentially invariant in presence or absence of nucleotide.
Keywords:Hsp70 protein  chaperone cycle  ATP hydrolysis  allostery  Mycoplasma genitalium
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号