首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Accumulation of acetylcholinesterase at newly formed nerve--muscle synapases.
Authors:L L Rubin  S M Schuetze  G D Fischbach
Institution:1. Department of Anatomy, University of Tennessee Center for Health Sciences, Memphis, Tennessee 38163, USA;2. Department of Anatomy and Laboratory of Human Reproduction and Reproductive Biology, Harvard Medical School, Boston, Massachusetts 02115 USA
Abstract:The mechanism of fluid transport in the developing preimplantation mouse embryo has been studiedin vitro by inhibiting zonular tight junction formation. Compaction, the morphogenetic process permitting zonular blastomere adhesions at the 8-cell stage, was suppressed by lowering extracellular calcium (Ca). The Ca threshold required for compaction is 0.04–0.06 mM, and in concentrations above the threshold, the rate of compaction is concentration dependent, whereas the rate of blastocyst formation is not and proceeds normally. At 0.02 mM Ca, both compaction and blastocyst development are completely prevented. Although focal tight and gap junctions are present, zonular tight junctions do not develop. We conclude that Ca is required for the maximization of cell-cell contact, but not for focal tight junction and gap junction formation. When early morulae are cultured in 0.02 mM Ca, small trophoblastic vesicles develop frequently with intracellular fluid vacuoles. If early 8-cell embryos are similarly cultured, cell division continues and many blastomeres acquire small intracellular membrane-bounded vaculoes. These coalesce, the cell volume increases, and the nucleus becomes eccentrically positioned, resulting in a giant vacuolated blastomere reminiscent of a miniaturized blastocyst. We propose that (1) vacuole formation may be an exaggeration of an intermediate intracellular step in fluid transport and (2) normal cell polarity established by zonular tight junctions is required for transcellular fluid transport.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号