首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Characterization of a 46 kda insect chitinase from transgenic tobacco
Authors:Xiaorong Wang  Xiongfei Ding  Bhuvana Gopalakrishnan  Thomas D Morgan  Lowell Johnson  Frank F White  Subbaratnam Muthukrishnan  Karl J Kramer
Institution:

a Department of Biochemistry, Kansas State University, Manhattan, KS 66506, U.S.A.

b Plant Pathology, Kansas State University, Manhattan, KS 66506, U.S.A.

c U. S. Grain Marketing Research Laboratory, ARS-USDA, Manhattan, KS 66502-2736, U.S.A.

Abstract:A 46 kDa Manduca sexta (tobacco hornworm) chitinase was isolated from leaves of transgenic tobacco plants containing a recombinant insect chitinase cDNA, characterized, and tested for insecticidal activity. The enzyme was purified by ammonium sulfate fractionation, Q-Sepharose anion-exchange chromatography and mono-S cation-exchange chromatography. Although the gene for the chitinase encoded the 85 kDa full-length chitinase as previously reported by Kramer et al. Insect Biochem. Molec. Biol. 23, 691–701 (1993)], the enzyme is produced in tobacco as a 46 kDa protein that is approximately four-fold less active than the 85 kDa chitinase. The N-terminal amino acid sequence of the 46 kDa chitinase is identical to that of the 85 kDa chitinase. The former enzyme is not glycosylated, whereas the latter contains approximately 25% carbohydrate. The pH and temperature optima of the 46 kDa chitinaseare similar to those of the 85 kDa chitinase. The former enzyme is more basic than the latter. The 46 kDa chitinase likely consists of the N-terminal catalytic domain of the 85 kDa chitinase and lacks the C-terminal domain that contains several potential sites for glycosylation. The 46 kDa chitinase is expressed in a number of plant organs, including leaves, flowers, stems and roots. Enzyme levels are higher in leaves and flowers than in stems and roots, and leaves from the middle portion of the plant have more chitinase than leaves from the top and bottom portions. Little or no enzyme is secreted outside of the plant cells because it remains in the intracellular space, even though its transit sequence is processed. When fed at a 2% dietary level, the 46 kDa chitinase caused 100% larval mortality of the merchant grain beetle, Oryzaephilis mercator. The results of this study support the hypothesis that insect chitinase is a biopesticidal protein for insect pests feeding on insect chitinase gene-containing transgenic plants.
Keywords:Chitinase  Tobacco  Transformation  Gene  Manduca sexta  Tobacco hornworm  Bioassay  Oryzaephilus mercator  Merchant grain beetle
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号