首页 | 本学科首页   官方微博 | 高级检索  
   检索      


On the existence and the role of chaotic processes in the nervous system
Authors:B Doyon
Institution:(1) Unité INSERM 230, Service de Neurologie, CHU PURPAN, 31059 TOULOUSE CEDEX, FRANCE
Abstract:Chaos theory is a rapidly growing field. As a technical term, “chaos” refers to deterministic but unpredictable processes being sensitively dependent upon initial conditions. Neurobiological models and experimental results are very complicated and some research groups have tried to pursue the “neuronal chaos”. Babloyantz's group has studied the fractal dimension (d) of electroencephalograms (EEG) in various physiological and pathological states. From deep sleep (d=4) to full awakening (d>8), a hierarchy of “strange” attractors paralles the hierarchy of states of consciousness. In epilepsy (petit mal), despite the turbulent aspect of a seizure, the attractor dimension was near to 2. In Creutzfeld-Jacob disease, the regular EEG activity corresponded to an attractor dimension less than the one measured in deep sleep. Is it healthy to be chaotic? An “active desynchronisation” could be favourable to a physiological system. Rapp's group reported variations of fractal dimension according to particular tasks. During a mental arithmetic task, this dimension increased. In another task, a P300 fractal index decreased when a target was identified. It is clear that the EEG is not representing noise. Its underlying dynamics depends on only a few degrees of freedom despite yet it is difficult to compute accurately the relevant parameters. What is the cognitive role of such a chaotic dynamics? Freeman has studied the olfactory bulb in rabbits and rats for 15 years. Multi-electrode recordings of a few mm2 showed a chaotic hierarchy from deep anaesthesia to alert state. When an animal identified a previously learned odour, the fractal dimension of the dynamics dropped off (near limit cycles). The chaotic activity corresponding to an alert-and-waiting state seems to be a field of all possibilities and a focused activity corresponds to a reduction of the attractor in state space. For a couple of years, Freeman has developed a model of the olfactory bulb-cortex system. The behaviour of the simple model “without learning” was quite similar to the real behaviour and a model “with learning” is developed. Recently, more and more authors insisted on the importance of the dynamic aspect of nervous functioning in cognitive modelling. Most of the models in the neural-network field are designed to converge to a stable state (fixed point) because such behaviour is easy to understand and to control. However, some theoretical studies in physics try to understand how a chaotic behaviour can emerge from neural networks. Sompolinsky's group showed that a sharp transition from a stable state to a chaotic state occurred in totally interconnected networks depending on the value of one control parameter. Learning in such systems is an open field. In conclusion, chaos does exist in neurophysiological processes. It is neither a kind of noise nor a pathological sign. Its main role could be to provide diversity and flexibility to physiological processes. Could “strange” attractors in nervous system embody mental forms? This is a difficult but fascinating question.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号