首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Active urea transport and an unusual basolateral membrane composition in the gills of a marine elasmobranch
Authors:Fines G A  Ballantyne J S  Wright P A
Institution:Department of Zoology, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
Abstract:In elasmobranch fishes, urea occurs at high concentrations (350-600 mM) in the body fluids and tissues, where it plays an important role in osmoregulation. Retention of urea by the gill against this huge blood-to-water diffusion gradient requires specialized adaptations to the epithelial cell membranes. Experiments were performed to determine the mechanisms and structural features that facilitate urea retention by the gill of the spiny dogfish Squalus acanthias. Analysis of urea uptake by gill basolateral membrane vesicles revealed the presence of a phloretin-sensitive (half inhibition 0.09 mM), sodium-coupled, secondary active urea transporter (Michaelis constant = 10.1 mM, maximal velocity = 0.34 micromol. h(-1). mg protein(-1)). We propose that this system actively transports urea out of the gill epithelial cells back into the blood against the urea concentration gradient. Lipid analyses of the basolateral membrane revealed high levels of cholesterol contributing to the highest reported cholesterol-to-phospholipid molar ratio (3.68). This unique combination of active urea transport and modification of the phospholipid bilayer membrane is responsible for decreasing the gill permeability to urea and facilitating urea retention by the gill of Squalus acanthias.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号