Temperature dependence of violaxanthin de-epoxidation and non-photochemical fluorescence quenching in intact leaves ofGossypium hirsutum L. andMalva parviflora L. |
| |
Authors: | Wolfgang Bilger Olle Björkman |
| |
Affiliation: | (1) Department of Plant Biology, Carnegie Institution of Washington, 290 Panama Street, 94305-1297 Stanford, CA, USA;(2) Present address: Lehrstuhl für Botanik II der Universität, Mittlerer Dallenbergweg 64, W-8700 Würzburg, Germany |
| |
Abstract: | The temperature dependence of the rate of de-epoxidation of violaxanthin to zeaxanthin was determined in leaves of chilling-sensitive Gossypium hirsutum L. (cotton) and chilling-resistant Malva parviflora L. by measurements of the increase in absorbance at 505 nm ( A505) and in the contents of antheraxanthin and zeaxanthin that occur upon exposure of predarkened leaves to excessive light. A linear relationship between A505 and the decrease in the epoxidation state of the xanthophyll-cycle pigment pool was obtained over the range 10–40° C. The maximal rate of de-epoxidation was strongly temperature dependent; Q10 measured around the temperature at which the leaf had developed was 2.1–2.3 in both species. In field-grown Malva the rate of de-epoxidation at any given measurement temperature was two to three times higher in leaves developed at a relatively low temperature in the early spring than in those developed in summer. Q10 measured around 15° C was in the range 2.2–2.6 in both kinds of Malva leaves, whereas it was as high as 4.6 in cotton leaves developed at a daytime temperature of 30° C. Whereas the maximum (initial) rate of de-epoxidation showed a strong decrease with decreased temperature the degree of de-epoxidation reached in cotton leaves after a 1–2 · h exposure to a constant photon flux density increased with decreased temperature as the rate of photosynthesis decrease. The zeaxanthin content rose from 2 mmol · (mol chlorophyll)–1 at 30° C to 61 mmol · (mol Chl)–1 at 10° C, corresponding to a de-epoxidation of 70% of the violaxanthin pool at 10° C. The degree of de-epoxidation at each temperature was clearly related to the amount of excessive light present at that temperature. The relationship between non-photochemical quenching of chlorophyll fluorescence and zeaxanthin formation at different temperatures was determined for both untreated control leaves and for leaves in which zeaxanthin formation was prevented by dithiothreitol treatment. The rate of development of that portion of non-photochemical quenching which was inhibited by dithiothreitol decreased with decreasing temperature and was linearly related to the rate of zeaxanthin formation over a wide temperature range. In contrast, the rate of development of the dithiothreitol-resistant portion of non-photochemical quenching was remarkably little affected by temperature. Evidently, the kinetics of the development of non-photochemical quenching upon exposure of leaves to excessive light is therefore in large part determined by the rate of zeaxanthin formation. For reasons that remain to be determined the relaxation of dithiothreitolsensitive quenching that is normally observed upon darkening of illuminated leaves was strongly inhibited at low temperatures.Abbreviations and Symbols Chl chlorophyll - DTT dithiothreitol - EPS epoxidation state - NPQ non-photochemical chlorophyll fluorescence quenching - PFD photon flux density - PSII photosystem II - F, Fm fluorescence emission at the actual, full closure of the PSII centersC.I.W.-D.P.B. Publication No. 1092We thank Connie Shih for skillful assistance in growing the plants, for conducting the HPLC analyses, and for preparing the figures. A Carnegie Institution Fellowship and a Feodor-Lynen-Fellowship by the Alexander von Humboldt-Foundation to W.B. is gratefully acknowledged. This work was supported by Grant No. 89-37-280-4902 of the Competitive Grants Program of the U.S. Department of Agriculture to O.B. |
| |
Keywords: | Chlorophyll fluorescence quenching Energy dissipation (non-radiative) Gossypium (photosynthesis) Light (excessive) Malva Photosynthesis and energy dissipation Temperature (leaf) Violaxanthin Xanthophyll cycle Zeaxanthin |
本文献已被 SpringerLink 等数据库收录! |
|