首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Ginsenoside Rg-1 Protects Retinal Pigment Epithelium (RPE) Cells from Cobalt Chloride (CoCl2) and Hypoxia Assaults
Authors:Ke-ran Li  Zhi-qing Zhang  Jin Yao  Yu-xia Zhao  Jing Duan  Cong Cao  Qin Jiang
Institution:1. Department of Eye, the Affiliated Eye Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.; 2. Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China.; 3. The Center for Safety Evaluation of Drugs, Academic Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, Jiangsu, China.; Rutgers University, United States of America,
Abstract:Severe retinal ischemia causes persistent visual impairments in eye diseases. Retinal pigment epithelium (RPE) cells are located near the choroidal capillaries, and are easily affected by ischemic or hypoxia. Ginsenoside Rg-1 has shown significant neuroprotective effects. This study was performed to test the cytoprotective effect of ginsenoside Rg-1 in RPE cells against hypoxia and cobalt chloride (CoCl2) assaults, and to understand the underlying mechanisms. We found that Rg-1 pre-administration significantly inhibited CoCl2- and hypoxia-induced RPE cell death and apoptosis. Reactive oxygen specisis (ROS)-dependent p38 and c-Jun NH(2)-terminal kinases (JNK) MAPK activation was required for CoCl2-induced RPE cell death, and Rg-1 pre-treatment significantly inhibited ROS production and following p38/JNK activation. Further, CoCl2 suppressed pro-survival mTOR complex 1 (mTORC1) activation in RPE cells through activating of AMP-activated protein kinase (AMPK), while Rg-1 restored mTORC1 activity through inhibiting AMPK activation. CoCl2-induced AMPK activation was also dependent on ROS production, and anti-oxidant N-acetylcysteine (NAC) prevented AMPK activation and RPE cell death by CoCl2. Our results indicated that Rg-1 could be further investigated as a novel cell-protective agent for retinal ischemia.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号