首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The B' helix determines cytochrome P450nor specificity for the electron donors NADH and NADPH
Authors:Zhang Li  Kudo Takashi  Takaya Naoki  Shoun Hirofumi
Institution:Institute of Applied Biochemistry, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan. lz32@cornell.edu
Abstract:Nitric oxide reductase (Nor) cytochrome P450nor (P450nor) is unique because it is catalytically self-sufficient, receiving electrons directly from NADH or NADPH. However, little is known about the direct binding of NADH to cytochrome. Here, we report that oxidized pyridine nucleotides (NAD(+) and NADP(+)) and an analogue induce a spectral perturbation in bound heme when mixed with P450nor. The P450nor isoforms are classified according to electron donor specificity for NADH or NADPH. One type (Fnor, a P450nor of Fusarium oxysporum) utilizes only NADH. We found that NAD(+) induced a type I spectral change in Fnor, whereas NADP(+) induced a reverse type I spectral change, although the K(d) values for both were comparable. In contrast, NADP(+) as well as NAD(+) caused a type I spectral change in Tnor, a P450nor isozyme from Trichosporon cutaneum that utilizes both NADH and NADPH as electron donors. The B' helix region of Tnor ((73)SAGGKAAA(80)) contains some Ala and Gly residues, whereas the sequence is replaced at a few sites with more bulky amino acid residues in Fnor ((73)SASGKQAA(80)). A single mutation (S75G) significantly improved the NADPH- dependent Nor activity of Fnor, and the overall activity was accelerated via the NADPH-enhanced reduction step. These results showed that pyridine nucleotide cofactors can bind P450nor and that only a few residues in the B' helix region determine cofactor specificity. We further showed that a poor electron donor (NADPH) could also bind Fnor, but an appropriate configuration for electron transfer is blocked by steric hindrance mainly by Ser(75) against the 2'-phosphate moiety. The present results along with previous observations together revealed a novel motif for cofactor binding.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号